Check sibling questions


Transcript

Ex 13.1, 11 A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find (i) P(E|F) and P (F|E)A fair die is rolled S = {1, 2, 3, 4, 5, 6} Event E E = {1, 3, 5} P(E) = 3/6 = 1/2 Event F F = {2, 3} P(F) = 2/6 = 1/3 Event G G = {2, 3, 4, 5} P(G) = 4/6 = 2/3 We need to find P(E|F) and P(F|E) Now, "E"∩"F" = {3} P("E"∩"F") = 1/6 Now, P(E|F) = (𝑃(𝐸 ∩ 𝐹))/(𝑃(𝐹)) = (1/6)/(1/3) = 𝟏/𝟐 P(F|E) = (𝑃(𝐹 ∩ 𝐸))/(𝑃(𝐸)) = (1/6)/(1/2) = 𝟏/𝟑 Ex 13.1, 11 A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find (iii) P((E ∪ F)|G) and P((E ∩ F)|G)P ( ("E"∪"F) | G ") Let "E"∪"F" = A So, A = {1, 2, 3, 5} P(A) = 4/6 Now, "A"∩"G" = {2, 3, 5} So, P("A"∩"G") = 3/6 Thus, P("A|G") = (𝑃(𝐴 ∩ 𝐺))/(𝑃(𝐺)) = (3/6)/(4/6) = 𝟑/𝟒 Therefore, P ( ("E"∪"F) | G ") = 𝟑/𝟒 Similarly, let’s do for P ( ("E"∩"F) | G" ) P( ("E"∩"F) | G ") Let "E"∩"F" = B So, B = {3} P("B") = 1/6 Now, "B"∩"G" = {3} So, P("B"∩"G") = 1/6 Thus, P("B|G") = (𝑃(𝐵 ∩ 𝐺))/(𝑃(𝐺)) = (1/6)/(4/6) = 𝟏/𝟒 Therefore, P ( ("E"∩ "F) | G ") = 𝟏/𝟒

  1. Chapter 13 Class 12 Probability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo