Last updated at Feb. 27, 2025 by Teachoo
Ex 5.2, 10 (Introduction) Prove that the greatest integer function defined by f (x) = [x], 0 < x < 3 is not differentiable at π₯=1 and π₯= 2. Ex 5.2, 10 Prove that the greatest integer function defined by f (x) = [x], 0 < x < 3 is not differentiable at π₯=1 and π₯= 2. f (x) = [x] Letβs check for both x = 1 and x = 2 At x = 1 f (x) is differentiable at x = 1 if LHD = RHD (πππ)β¬(π‘βπ) (π(π) β π(π β π))/π = (πππ)β¬(hβ0) (π(1) β π(1 β β))/β = (πππ)β¬(hβ0) ([1] β [(1 β β)])/β = (πππ)β¬(hβ0) (1 β 0)/β = (πππ)β¬(hβ0) 1/β = 1/0 = Not defined (πππ)β¬(π‘βπ) (π(π + π) β π(π))/π = (πππ)β¬(hβ0) (π(1 + β) β π(1))/β = (πππ)β¬(hβ0) ([(1 + β)] β [1])/β = (πππ)β¬(hβ0) (1 β 1)/β = (πππ)β¬(hβ0) 0/β = (πππ)β¬(hβ0) 0 = 0 For greatest integer function [1] = 1 [1 β h] = 0 [1 + h] = 1 Since LHD β RHD β΄ f(x) is not differentiable at x = 1 Hence proved At x = 2 f (x) is differentiable at x = 2 if LHD = RHD L H D (πππ)β¬(π‘βπ) (π(π) β π(π β π))/π = (πππ)β¬(hβ0) (π(2) β π(2 β β))/β = (πππ)β¬(hβ0) ([2] β [(2 β β)])/β = (πππ)β¬(hβ0) (2 β 1)/β = (πππ)β¬(hβ0) 1/β = 1/0 = Not defined R H D (πππ)β¬(π‘βπ) (π(π + π) β π(π))/π = (πππ)β¬(hβ0) (π(2 + β) β π(2))/β = (πππ)β¬(hβ0) ([(2 + β)] β [2])/β = (πππ)β¬(hβ0) (2 β 2)/β = (πππ)β¬(hβ0) 0/β = (πππ)β¬(hβ0) 0 = 0 For greatest integer function [2] = 2 [2 β h] = 1 [2 + h] = 2 Since LHD β RHD β΄ f(x) is not differentiable at x = 2 Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo