Last updated at Dec. 16, 2024 by Teachoo
Ex 5.2, 5 Differentiate the functions with respect to π₯ : sinβ‘γ (ππ₯ + π)γ/cosβ‘γ (ππ₯ + π)γ Let π¦ = sinβ‘γ (ππ₯ + π)γ/cosβ‘γ (ππ₯ + π)γ Let π’ = sinβ‘γ (ππ₯+π)γ & π£=cosβ‘γ (ππ₯+π)γ β΄ π = π/π We need to find derivative of π¦ π€.π.π‘.π₯ ππ¦/ππ₯ = (π’/π£)^β² ππ¦/ππ₯ = (π’^β² π£ β γ π£γ^β² π’)/π£^2 Finding πβ π’=sinβ‘γ (ππ₯+π)γ Derivative of π’ π€.π.π‘.π₯ ππ’/ππ₯ =π(sinβ‘γ (ππ₯+π)γ )/ππ₯ γ=cos γβ‘(ππ₯+π) . π(ππ₯ + π)/ππ₯ γ=cos γβ‘(ππ₯+π) (π +0) γ=π πππ γβ‘(ππ+π) Finding πβ π£=cosβ‘γ (ππ₯+π)γ Derivative of π£ π€.π.π‘.π₯ ππ£/ππ₯ = (π(cosβ‘γ (ππ₯ + π)γ )^β² )/ππ₯ γ=βsiπ γβ‘(ππ₯+π) . π(ππ₯ + π)/ππ₯ γ=βsin γβ‘(ππ₯+π) (π+0) γ=βπ πππ γβ‘(ππ+π) Now, π π/π π = (π^β² π β γ πγ^β² π)/π^π = (γa cos γβ‘γ(ππ₯ + π) .γ cosγβ‘γ (ππ₯ + π)γ β (βπ γsin γβ‘γ(ππ₯ + π) γ ) γ (γsin γβ‘γ(ππ₯ + π)γ ) )/(cosβ‘γ (ππ₯ + π)γ )^2 = (γa cos γβ‘γ(ππ₯ + π) .γ cosγβ‘(ππ₯ + π) + π . γsin γβ‘(ππ₯ + π) γ sinβ‘γ(ππ₯ + π)γ )/cos^2β‘(ππ₯ + π) = (γa cos γβ‘γ(ππ₯ + π) .γ cosγβ‘γ (ππ₯ + π)γ γ )/cos^2β‘(ππ₯ + π) + (π . γsin γβ‘γ(ππ₯ + π) γ. sinβ‘γ (ππ₯ + π)γ )/cos^2β‘(ππ₯ + π) = a cos (ππ₯+ π) π/πππβ‘γ (ππ + π )γ + π . γsin γβ‘(ππ₯+π) . (γπππ γβ‘γ(ππ + π )γ )/πππβ‘γ (ππ + π )γ π/πππβ‘γ (ππ + π )γ = π πππ (ππ₯+ π) .πππβ‘γ(ππ₯+π)γ + π . γπππ γβ‘(ππ₯+π).γπππ γβ‘(ππ₯+π).πππβ‘(ππ₯+π)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo