Check sibling questions


Transcript

Ex 5.2, 5 Differentiate the functions with respect to π‘₯ : sin⁑〖 (π‘Žπ‘₯ + 𝑏)γ€—/cos⁑〖 (𝑐π‘₯ + 𝑑)γ€— Let 𝑦 = sin⁑〖 (π‘Žπ‘₯ + 𝑏)γ€—/cos⁑〖 (𝑐π‘₯ + 𝑑)γ€— Let 𝑒 = sin⁑〖 (π‘Žπ‘₯+𝑏)γ€— & 𝑣=cos⁑〖 (𝑐π‘₯+𝑑)γ€— ∴ π’š = 𝒖/𝒗 We need to find derivative of 𝑦 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑒/𝑣)^β€² 𝑑𝑦/𝑑π‘₯ = (𝑒^β€² 𝑣 βˆ’ γ€– 𝑣〗^β€² 𝑒)/𝑣^2 Finding 𝒖’ 𝑒=sin⁑〖 (π‘Žπ‘₯+𝑏)γ€— Derivative of 𝑒 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑒/𝑑π‘₯ =𝑑(sin⁑〖 (π‘Žπ‘₯+𝑏)γ€— )/𝑑π‘₯ γ€–=cos 〗⁑(π‘Žπ‘₯+𝑏) . 𝑑(π‘Žπ‘₯ + 𝑏)/𝑑π‘₯ γ€–=cos 〗⁑(π‘Žπ‘₯+𝑏) (π‘Ž +0) γ€–=𝐚 𝒄𝒐𝒔 〗⁑(𝒂𝒙+𝒃) Finding 𝒗’ 𝑣=cos⁑〖 (𝑐π‘₯+𝑑)γ€— Derivative of 𝑣 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑣/𝑑π‘₯ = (𝑑(cos⁑〖 (𝑐π‘₯ + 𝑑)γ€— )^β€² )/𝑑π‘₯ γ€–=βˆ’si𝑛 〗⁑(𝑐π‘₯+𝑑) . 𝑑(𝑐π‘₯ + 𝑑)/𝑑π‘₯ γ€–=βˆ’sin 〗⁑(𝑐π‘₯+𝑏) (𝑐+0) γ€–=βˆ’πœ π’”π’Šπ’ 〗⁑(𝒄𝒙+𝒃) Now, π’…π’š/𝒅𝒙 = (𝒖^β€² 𝒗 βˆ’ γ€– 𝒗〗^β€² 𝒖)/𝒗^𝟐 = (γ€–a cos 〗⁑〖(π‘Žπ‘₯ + 𝑏) .γ€– cos〗⁑〖 (𝑐π‘₯ + 𝑑)γ€— βˆ’ (βˆ’π‘ γ€–sin 〗⁑〖(𝑐π‘₯ + 𝑑) γ€— ) γ€— (γ€–sin 〗⁑〖(π‘Žπ‘₯ + 𝑏)γ€— ) )/(cos⁑〖 (𝑐π‘₯ + 𝑑)γ€— )^2 = (γ€–a cos 〗⁑〖(π‘Žπ‘₯ + 𝑏) .γ€– cos〗⁑(𝑐π‘₯ + 𝑑) + 𝑐 . γ€–sin 〗⁑(𝑐π‘₯ + 𝑑) γ€— sin⁑〖(π‘Žπ‘₯ + 𝑏)γ€— )/cos^2⁑(𝑐π‘₯ + 𝑑) = (γ€–a cos 〗⁑〖(π‘Žπ‘₯ + 𝑏) .γ€– cos〗⁑〖 (𝑐π‘₯ + 𝑑)γ€— γ€— )/cos^2⁑(𝑐π‘₯ + 𝑑) + (𝑐 . γ€–sin 〗⁑〖(𝑐π‘₯ + 𝑑) γ€—. sin⁑〖 (π‘Žπ‘₯ + 𝑏)γ€— )/cos^2⁑(𝑐π‘₯ + 𝑑) = a cos (π‘Žπ‘₯+ 𝑏) 𝟏/𝒄𝒐𝒔⁑〖 (𝒄𝒙 + 𝒅)γ€— + 𝑐 . γ€–sin 〗⁑(π‘Žπ‘₯+𝑏) . (γ€–π’”π’Šπ’ 〗⁑〖(𝒄𝒙 + 𝒅)γ€— )/𝒄𝒐𝒔⁑〖 (𝒄𝒙 + 𝒅)γ€— 𝟏/𝒄𝒐𝒔⁑〖 (𝒄𝒙 + 𝒅)γ€— = 𝒂 𝒄𝒐𝒔 (π‘Žπ‘₯+ 𝑏) .𝒔𝒆𝒄⁑〖(𝑐π‘₯+𝑑)γ€— + 𝒄 . γ€–π’”π’Šπ’ 〗⁑(π‘Žπ‘₯+𝑏).〖𝒕𝒂𝒏 〗⁑(𝑐π‘₯+𝑑).𝒔𝒆𝒄⁑(𝑐π‘₯+𝑑)

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo