Check sibling questions


Transcript

Ex 5.3, 15 Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ in, y = secโ€“1 (1/( 2๐‘ฅ2โˆ’1 )), 0 < x < 1/โˆš2 y = secโ€“1 (1/( 2๐‘ฅ^2 โˆ’ 1 )) ๐’”๐’†๐’„โก๐’š = 1/(2๐‘ฅ^2 โˆ’ 1) ๐Ÿ/๐œ๐จ๐ฌโก๐’š = 1/(2๐‘ฅ^2 โˆ’ 1) cosโก๐‘ฆ = 2๐‘ฅ2โˆ’1 y = cos โ€“1 (2๐‘ฅ2โˆ’1) Putting ๐‘ฅ = cosโกฮธ ๐‘ฆ = cos โ€“1 (2๐‘๐‘œ๐‘ 2๐œƒโˆ’1) ๐‘ฆ = cos โ€“1 (cosโก2 ๐œƒ) ๐‘ฆ = 2๐œƒ Putting value of ฮธ = cosโˆ’1 x ๐‘ฆ = 2 ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ . (๐‘‘(๐‘ฆ))/๐‘‘๐‘ฅ = (๐‘‘ (2ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 2 (๐‘‘ (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 2 . ((โˆ’1)/โˆš(1 โˆ’ ๐‘ฅ^2 )) ๐’…๐’š/๐’…๐’™ = (โˆ’๐Ÿ)/โˆš(๐Ÿ โˆ’ ๐’™^๐Ÿ ) (๐‘๐‘œ๐‘ โก2๐œƒ " = 2 " ใ€–๐‘๐‘œ๐‘ ใ€—^2 ๐œƒโˆ’1) Since x = cos ฮธ โˆด ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) x = ฮธ ((ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ")โ€˜ = " (โˆ’1)/โˆš(1 โˆ’ ๐‘ฅ^2 ))

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo