Check sibling questions


Transcript

Ex 5.3, 14 Find 𝑑𝑦/𝑑π‘₯ in, y = sin–1 (2π‘₯ √(1βˆ’π‘₯^2 )) , βˆ’ 1/√2 < x < 1/√2 y = sin–1 (2π‘₯ √(1βˆ’π‘₯^2 )) Putting π‘₯ =π‘ π‘–π‘›β‘πœƒ 𝑦 = sin–1 (2 sinβ‘πœƒ √(1βˆ’γ€–π‘ π‘–π‘›γ€—^2 πœƒ)) 𝑦 = sin–1 ( 2 sin ΞΈ √(γ€–π‘π‘œπ‘ γ€—^2 πœƒ)) 𝑦 ="sin–1 " (γ€–"2 sin ΞΈ" 〗⁑cosβ‘πœƒ ) 𝑦 = sin–1 (sin⁑〖2 πœƒ)γ€— 𝑦 = 2ΞΈ Putting value of ΞΈ = sinβˆ’1 x 𝑦 = 2 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯ Since x = sin ΞΈ ∴ 〖𝑠𝑖𝑛〗^(βˆ’1) x = ΞΈ Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ . (𝑑(𝑦))/𝑑π‘₯ = (𝑑 (γ€–2 sin^(βˆ’1)〗⁑π‘₯ ))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 2 (𝑑〖 (𝑠𝑖𝑛〗^(βˆ’1) π‘₯))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 2 (1/√(1 βˆ’γ€– π‘₯γ€—^2 )) π’…π’š/𝒅𝒙 = 𝟐/√(𝟏 βˆ’ 𝒙^𝟐 ) ((sin^(βˆ’1)⁑π‘₯ )^β€²= 1/√(1 βˆ’ π‘₯^2 ))

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo