Check sibling questions


Transcript

Question 11 Find the area of the region {(๐‘ฅ, ๐‘ฆ) : 0 โ‰ค ๐‘ฆ โ‰ค ๐‘ฅ2 + 1, 0 โ‰ค ๐‘ฆ โ‰ค ๐‘ฅ + 1, 0 โ‰ค ๐‘ฅ โ‰ค 2} Here, ๐ŸŽโ‰ค๐’šโ‰ค๐’™^๐Ÿ+๐Ÿ ๐‘ฆโ‰ฅ0 So it is above ๐‘ฅโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  ๐‘ฆ=๐‘ฅ^2+1 i.e. ๐‘ฅ^2=๐‘ฆโˆ’1 So, it is a parabola ๐ŸŽโ‰ค๐’šโ‰ค๐’™+๐Ÿ ๐‘ฆโ‰ฅ0 So it is above ๐‘ฅโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  ๐‘ฆ=๐‘ฅ+1 It is a straight line Also ๐ŸŽโ‰ค๐’™โ‰ค๐Ÿ Since ๐‘ฆโ‰ฅ0 & 0โ‰ค๐‘ฅโ‰ค2 We work in First quadrant with 0โ‰ค๐‘ฅโ‰ค2 So, our figure is Finding point of intersection P & Q Here, P and Q are intersection of parabola and line Solving ๐‘ฆ=๐‘ฅ^2+1 & ๐‘ฆ=๐‘ฅ+1 ๐‘ฅ^2+1=๐‘ฅ+1 ๐‘ฅ^2โˆ’๐‘ฅ+1โˆ’1=0 ๐‘ฅ^2โˆ’๐‘ฅ+0=0 ๐‘ฅ(๐‘ฅโˆ’1)=0 So, ๐‘ฅ=0 , ๐‘ฅ=1 For ๐’™ = 0 ๐‘ฆ=๐‘ฅ+1=0+1=1 So, P(0 , 1) For ๐’™ = 1 ๐‘ฆ=๐‘ฅ+1=1+1=2 So, Q(1 , 2) Finding area Area required = Area OPQRST Area OPQRST = Area OPQT + Area QRST Area OPQT Area OPQT =โˆซ_0^1โ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— ๐‘ฆโ†’ equation of Parabola PQ ๐‘ฆ=๐‘ฅ^2+1 โˆด Area OPQT =โˆซ_0^1โ–’(๐‘ฅ^2+1) =[๐‘ฅ^3/3+๐‘ฅ]_0^1 =[1^3/3+1]โˆ’[0^3/3+0] =1/3+1 =4/3 Area QRST Area QRST=โˆซ_1^2โ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— Here, ๐‘ฆโ†’ equation of line QP ๐‘ฆ=๐‘ฅ + 1 โˆด Area QRST=โˆซ_1^2โ–’(๐‘ฅ+1) ๐‘‘๐‘ฅ =[๐‘ฅ^2/2+๐‘ฅ]_1^2 =(2^2/2+2)โˆ’(1^2/2+1) =2+2โˆ’(1/2+1) =4โˆ’3/2 =5/2 Thus, Area Required = Area OPQT + Area QPST = 4/3+5/2 = (8 + 15)/6 = ๐Ÿ๐Ÿ‘/๐Ÿ” square units

  1. Chapter 8 Class 12 Application of Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo