Check sibling questions


Transcript

Example 1 Find the area enclosed by the circle ๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ž2Given ๐‘ฅ^2 + ๐‘ฆ^2= ๐‘Ž^2 This is a circle with Center = (0, 0) Radius = ๐‘Ž Since radius is a, OA = OB = ๐‘Ž A = (๐‘Ž, 0) B = (0, ๐‘Ž) Now, Area of circle = 4 ร— Area of Region OBAO = 4 ร— โˆซ1_๐ŸŽ^๐’‚โ–’ใ€–๐’š ๐’…๐’™ใ€— Here, y โ†’ Equation of Circle We know that ๐‘ฅ^2 + ๐‘ฆ^2 = ๐‘Ž^2 ๐‘ฆ^2 = ๐‘Ž^2โˆ’ ๐‘ฅ^2 y = ยฑ โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) Since AOBA lies in 1st Quadrant y = โˆš(๐’‚^๐Ÿโˆ’๐’™^๐Ÿ ) Now, Area of circle = 4 ร— โˆซ1_0^๐‘Žโ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— = 4 ร— โˆซ1_0^๐‘Žโ–’ใ€–โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) ๐‘‘๐‘ฅใ€— Using: โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 )dx = 1/2 โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) + ๐‘Ž^2/2 ใ€–"sin" ใ€—^(โˆ’1) ๐‘ฅ/4 + c = 4[๐’™/๐Ÿ โˆš(๐’‚^๐Ÿโˆ’๐’™^๐Ÿ )+๐’‚^๐Ÿ/๐Ÿ ใ€–"sin" ใ€—^(โˆ’๐Ÿ) ๐’™/๐’‚]_๐ŸŽ^๐’‚ = 4[๐‘Ž/2 โˆš(๐‘Ž^2โˆ’๐‘Ž^2 )+๐‘Ž^2/2 ใ€–"sin" ใ€—^(โˆ’1) ๐‘Ž/๐‘Žโˆ’0/2 โˆš(๐‘Ž^2โˆ’0)โˆ’0^2/2 ใ€–"sin" ใ€—^(โˆ’1) (0)] = 4[0+๐‘Ž^2/2 ใ€–"sin" ใ€—^(โˆ’1) (1)โˆ’0โˆ’0] = 4.๐‘Ž^2/2. ๐œ‹/2 = ๐…๐’‚^๐Ÿ

  1. Chapter 8 Class 12 Application of Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo