Check sibling questions


Transcript

Misc 17 Solve tan−1 (x/y) – tan−1 (x − y)/(x + y) is equal to (A) π/2 (B) π/3 (C) π/4 (D) (−3π)/4 We know that tan–1 x – tan–1 y = tan–1 ((𝐱 − 𝐲)/(𝟏 + 𝐱𝐲)) tan−1 x/y – tan−1 ((x − y)/(x + y)) = tan−1 [(x/y − (x − y )/(x + y))/(1 + (x/y) ((x − y )/(x + y)) )] Replacing x by 𝑥/𝑦 & y by (x − y)/(x + y) = tan−1 (((𝑥 ( 𝑥 + 𝑦 ) − 𝑦 ( 𝑥 − 𝑦 ))/(𝑦 ( 𝑥 + 𝑦 ) ))/((𝑦 ( 𝑥 + 𝑦 )+ 𝑥 ( 𝑥 − 𝑦))/(𝑦 ( 𝑥 + 𝑦) ))) = tan−1 ((𝑥 ( 𝑥 + 𝑦 ) − 𝑦 ( 𝑥 − 𝑦 ))/(𝑦 ( 𝑥 + 𝑦 ) ) × (𝑦 (𝑥 + 𝑦))/(𝑦 ( 𝑥 + 𝑦 )+ 𝑥 ( 𝑥 −𝑦) )) = tan−1 ((𝑥 ( 𝑥 + 𝑦 ) − 𝑦 ( 𝑥 − 𝑦 ))/(𝑦 ( 𝑥 + 𝑦 ) + 𝑥 (𝑥 + 𝑦)) × (𝑦 (𝑥 + 𝑦))/(𝑦 (𝑥 + 𝑦) )) = tan−1 ((𝑥 ( 𝑥 + 𝑦 ) − 𝑦 ( 𝑥 − 𝑦 ))/(𝑦 ( 𝑥 + 𝑦 ) + 𝑥 (𝑥 + 𝑦))) = tan−1 ((𝑥2+ 𝑥𝑦 − 𝑦𝑥 + 𝑦2)/(𝑦𝑥 +𝑦2 + 𝑥2 − 𝑥𝑦))) = tan−1 ((𝑥2+ 𝑦2+ 𝑦𝑥 − 𝑦𝑥)/(𝑦2 + 𝑥2 + 𝑦𝑥 − 𝑥𝑦))) = tan−1 ((𝑥2+ 𝑦2 )/(𝑦2 + 𝑥2 )) = tan−1 (1) = tan−1 ("tan " π/4) = π/4 Hence, Correct answer is C (As tan 𝜋/4 = 1)

  1. Chapter 2 Class 12 Inverse Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo