Last updated at Dec. 16, 2024 by Teachoo
Misc 9 Prove cot−1 ((√(1 + sin〖x 〗 ) + √(1 − sinx ))/(√(1 +〖 sin〗x ) − √(1 − sinx ))) = 𝑥/2 , x ∈ (0, 𝜋/4) First, finding √(1+sin𝑥 ) & √(1−sin𝑥 ) separately We know that sin 2x = 2 sin x cos x Replace x by 𝑥/2 sin (2𝑥/2) = 2 sin 𝑥/2 cos 𝑥/2 Adding 1 both sides 1 + sin x = 1 + 2 sin 𝑥/2 cos 𝑥/2 1 + sin x = sin2 𝑥/2 + cos2 𝑥/2 + 2sin 𝑥/2 cos 𝑥/2 1 + sin x = (sin 𝑥/2 + cos 𝑥/2)2 √(𝟏+𝒔𝒊𝒏𝒙 ) = sin 𝒙/𝟐 + cos 𝒙/𝟐 We know that sin 2x = 2sin x cos x Replace x by 𝑥/2 sin 2𝑥/2 = 2sin 𝑥/2 cos 𝑥/2 sin x = 2sin 𝑥/2 cos 𝑥/2 Multiply by –1 on both sides And then, Adding 1 both sides 1 – sin x = 1 – 2 sin 𝑥/2 cos 𝑥/2 1 - sin x = cos2 𝑥/2 + sin2 𝑥/2 – 2sin 𝑥/2 cos 𝑥/2 1 – sin x = (cos (𝑥 )/2 – sin 𝑥/2)2 √(𝟏 −𝒔𝒊𝒏𝒙 ) = (cos (𝒙 )/𝟐 – sin 𝒙/𝟐) As sin2 x + cos2 x = 1 sin2 𝑥/2 + cos2 𝑥/2 = 1 As sin2 x + cos2 x = 1 sin2 𝑥/2 + cos2 𝑥/2 = 1 Therefore, cot−1 ((√(1 + sinx ) + √(1 − sinx ))/(√(1 + sinx ) − √(1 −〖 sin〗x ))) = cot−1 ((〖𝐬𝐢𝐧 〗〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗〖𝒙/𝟐〗 − 〖𝒔𝒊𝒏 〗〖𝒙/𝟐〗 )/(〖𝒔𝒊𝒏 〗〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗〖𝒙/𝟐〗 − (〖𝒄𝒐𝒔 〗〖𝒙/𝟐〗 − 〖𝒔𝒊𝒏 〗〖𝒙/𝟐〗 ) )) = cot−1 ((〖sin 〗〖𝑥/2〗 − 〖sin 〗〖𝑥/2〗 + 〖cos 〗〖𝑥/2〗 + 〖cos 〗〖𝑥/2〗)/(〖cos 〗〖𝑥/2〗 − 〖cos 〗〖𝑥/2〗 + 〖sin 〗〖𝑥/2〗 + 〖sin 〗〖𝑥/2〗 )) = cot−1 ((2 cos x/2 )/〖2 sin〗〖 x/2 〗 ) = cot−1 ("cot " 𝐱/𝟐) = 𝒙/𝟐 = R.H.S. Hence, L.H.S. = R.H.S. Hence Proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo