Last updated at Dec. 16, 2024 by Teachoo
Misc 7 Prove tan–1 63/16 = sin–1 5/13 + cos–1 3/5 Let a = sin–1 5/13 , b = cos–1 3/5 Finding tan a & tan b We convert sin–1 & cos–1 to tan–1 & then use tan (a + b) formula Let a = sin–1 𝟓/𝟏𝟑 sin a = 5/13 We know that cos a = √(1 –sin2 𝑎) = √("1 – " (5/13)^2 ) = √(144/169) = 12/13 Now, tan a = (sin 𝑎)/(cos a) = (5/13)/(12/13) = 5/13×13/12 = 5/12 Let b = cos–1 𝟑/𝟓 cos b = 3/5 We know that sin b = √("1 – cos2 b" ) = √("1 –" (3/5)^2 ) =√(16/25) = 4/5 Now, tan b = sin𝑏/cos𝑏 = (4/5)/(3/5) = 4/5×5/3 = 4/3 Now we know that tan (a + b) = 𝑡𝑎𝑛〖𝑎 +〖 𝑡𝑎𝑛〗〖𝑏 〗 〗/(1 − 𝑡𝑎𝑛〖𝑎 𝑡𝑎𝑛𝑏 〗 ) Putting tan a = 5/12 & tan b = 4/3 tan (a + b) = (5/12 + 4/3)/(1 − 5/12 × 4/3) = ((5 × 3 + 4 × 12)/36)/(1 − 20/36) = ((15 + 48)/36)/((36 − 20)/36) = (63/36)/(16/36) = 63/36×36/16 = 𝟔𝟑/𝟏𝟔 Thus, tan (a + b) = 63/16 a + b = tan–1 (63/16) Putting values of a & b sin-1 𝟓/𝟏𝟑 + cos–1 𝟑/𝟓 = tan–1 (𝟔𝟑/𝟏𝟔) Hence L.H.S = R.H.S Hence Proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo