Β
Last updated at Dec. 16, 2024 by Teachoo
Β
Misc 3 Prove 2 sin-1 3/5 = tan-1 24/7 We need to convert LHS in form tan-1 Converting sin-1 (π/π) to tan-1 Let x = sin-1 (3/5) sin x = 3/5 Now, cos x = β(1βπ ππ2 π₯) = β(1 β (3/5)^2 ) = β(1 β 9/25) = β((25 β 9)/25) = β(16/25) = 4/5 Thus, tan x = sinβ‘π₯/cosβ‘π₯ tan x = (3/5)/(4/5) tan x = 3/4 x = tanβ1 π/π Solving L.H.S 2 sinβ1 π/π = 2x = 2 tan-1 (3/4) Using 2tan-1 x = tan-1 (ππ/(π β ππ)) = tan-1 (2(3/4)/(1 β (3/4)2)) = tan-1 ((3/2)/(1 β 9/16)) = tan-1 ((3/2)/( (16 β 9)/16)) = tan-1 ((3/2)/( 7/16)) = tan-1 (3/2Γ16/7) = tan-1 (ππ/π) = R.H.S. Hence L.H.S. = R.H.S Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo