Last updated at Dec. 13, 2024 by Teachoo
Question 7 (Introduction) Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals. Concept 1 Two equilateral triangle are always similar In β π΄π΅πΆ πππ β π·πΈπΉ π·πΈ/π΄π΅=12/6 πΈπΉ/π΅πΆ=12/6 π·πΉ/π΄πΆ=12/6 Hence by SSS similarity β π΄π΅πΆ ~ β π·πΈπΉ Concept 2 Diagonal of a square is β2 of its side Since all sides of square are equal, Let AB = BC = CD = AD = x cm All angles of square are 90Β° So, β C = 90Β° According to Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 (BD)2 = BC2 + DC2 (BD)2 = BC2 + DC2 BD2 = x2 + x2 BD2 = 2x2 BD = β2 x Hence, π·πππππππ/π πππ = π΅π·/π·πΆ = (β2 π₯)/π₯ = β2/1 Diagonal = β2 side Now we can apply these concepts in Question 7 Question 7 Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals. Given: Square ABCD with Diagonal BD β π΅πΆπΈ which is described on base BC β π΅π·πΉ which is descried on base BD Both β π΅πΆπΈ and β π΅π·πΉ equilateral To prove: (ππ β π΅πΆπΈ)/(ππ β πΉπ·π΅)=1/2 Proof: Both Ξ π΅πΆπΈ and β π΅π·πΉ equilateral Both β π΅πΆπΈ and β π΅π·πΉ equilateral In β π΅π·πΉ and β π΅πΆπΈ π·πΉ/πΆπΈ=πΉπ΅/πΈπ΅=π·π΅/πΆπ΅ Hence by SSS similarity β πΉπ΅π· ~ β π΅πΆπΈ We know that in similar triangles, Ratio of area of triangle is equal to ratio of square of corresponding sides (ππ β πΉπ΅π·)/(ππ β π΅πΆπΈ)=( π·π΅/π΅πΆ )^2 But DB = β2 π΅πΆ as DB is the diagonal of square ABCD Hence (ππ β πΉπ΅π·)/(ππ β π΅πΆπΈ)=( (β2 π΅πΆ)/π΅πΆ )^2 (ππ β πΉπ΅π·)/(ππ β π΅πΆπΈ)=(β2)2 (ππ β πΉπ΅π·)/(ππ β π΅πΆπΈ)=2 (ππ β π΅πΆπΈ)/(ππ β πΉπ΅π·)=1/2 Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo