Check sibling questions

Let A = [8(1 sin⁡α 1 -sin⁡α 1 sin⁡α -1 -sin⁡α 1)], where 0 ≤ α ≤ 2π, then:

(a) |A|= 0        (b) |A| ∈ (2,∞)

(c) |A| ∈ (2,4)  (d) |A| ∈ [2, 4]

 

This question is inspired from Misc 19 (MCQ) - Chapter 4 Class 12 - Determinants


Transcript

Question 45 Let A = [■8(1&sin⁡𝛼&1@−sin⁡𝛼&1&sin⁡𝛼@−1&−sin⁡𝛼&1)], where 0 ≤ α ≤ 2π, then: (a) |A|= 0 (b) |A| ∈ (2,∞) (c) |A| ∈ (2,4) (d) |A| ∈ [2, 4] |A| = |■8(1&sin⁡θ&1@−sin⁡θ&1&sin⁡θ@−1&〖−sin〗⁡θ&1)| = 1 |■8(1&sin⁡θ@−sin⁡θ&1)| – sin θ |■8(−sin⁡θ&sin⁡θ@−1&1)| + 1 |■8(−sin⁡θ&1@−1&〖−sin〗⁡θ )| = 1 (1 + sin2 θ) – sin θ (–sin θ + sin θ) + 1 (sin2 θ + 1) = (1 + sin2 θ) – sin θ × 0 + (1 + sin2 θ) = 2 (1 + sin2 θ) Thus, |A| = 2 (1 + sin2 θ) We know that –1 ≤ sin θ ≤ 1 So, value of sin θ can be from –1 to 1 Suppose, Hence, value of sin2 θ can be from 0 to 1 (negative not possible) Putting sin2 θ = 0 in |A| |A| = 2(1 + 0) = 2 ∴ Minimum value of |A| is 2 Putting sin2 θ = 1 in |A| |A| = 2 (1 + 1) = 2 (2) = 4 ∴ Maximum value of |A| is 4

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo