Check sibling questions

The value of k (k < 0) for which the function f defined as
f (x)={((1 -cos⁡kx)/(x sin⁡x ),x≠0  1/2,x=0)┤ is continuous at x = 0 is :

(a) ±  1  (b) −1      (c) ±  1/2  (d) 1/2

This question is inspired from -   Question 21 - CBSE Class 12 Sample Paper for 2021 Boards


Transcript

Question 2 The value of k (k < 0) for which the function f defined as 𝑓 (π‘₯)={β–ˆ((1 βˆ’cosβ‘π‘˜π‘₯)/(π‘₯ sin⁑π‘₯ ),π‘₯β‰ 0@1/2, π‘₯=0)─ is continuous at x = 0 is : (a) Β± 1 (b) βˆ’1 (c) Β± 1/2 (d) 1/2 Given that function is continuous at x = 0 𝑓(π‘₯) is continuous at x = 0 i.e. (π₯𝐒𝐦)┬(π±β†’πŸŽ) 𝒇(𝒙)=𝒇(𝟎) Limit at x β†’ 0 (π‘™π‘–π‘š)┬(π‘₯β†’0) f(x) = (π‘™π‘–π‘š)┬(β„Žβ†’0) f(h) = lim┬(hβ†’0) (1 βˆ’ cosβ‘π‘˜β„Ž)/(β„Ž (sinβ‘β„Ž) ) = lim┬(hβ†’0) (𝟐 〖𝐬𝐒𝐧〗^πŸβ‘γ€–π’Œπ’‰/πŸγ€—)/(β„Ž (sinβ‘β„Ž)) = lim┬(hβ†’0) (2 sin^2β‘γ€–π‘˜β„Ž/2γ€—)/1 Γ—1/(β„Ž (sinβ‘β„Ž)) = (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝟐 γ€–π’”π’Šπ’γ€—^πŸβ‘γ€–π’Œπ’‰/πŸγ€—)/(π’Œπ’‰/𝟐)^𝟐 Γ— (π’Œπ’‰/𝟐)^𝟐/(𝒉 (π’”π’Šπ’β‘π’‰)) = lim┬(hβ†’0) (2 sin^2β‘γ€–π‘˜β„Ž/2γ€—)/(π‘˜β„Ž/2)^2 Γ— (π‘˜^2 β„Ž^2)/(4β„Ž (sinβ‘β„Ž)) = lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ— (π’Œ^𝟐 𝒉)/(𝟐(π’”π’Šπ’β‘π’‰)) = π’Œ^𝟐/𝟐 lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ— β„Ž/sinβ‘β„Ž = π‘˜^2/2 lim┬(hβ†’0) sin^2β‘γ€–π‘˜β„Ž/2γ€—/(π‘˜β„Ž/2)^2 Γ—lim┬(hβ†’0) β„Ž/sinβ‘β„Ž = π‘˜^2/2 Γ— 1 Γ— 1 = π’Œ^𝟐/𝟐 Now, (π₯𝐒𝐦)┬(π±β†’πŸŽ) 𝒇(𝒙)=𝒇(𝟎) π‘˜^2/2 = 1/2 π‘˜^2 =1 π’Œ =±𝟏 But, given that k < 0 Thus, only value is k = βˆ’1 So, the correct answer is (b)

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo