Check sibling questions


Transcript

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. ((1 +π‘‘π‘Žπ‘›2 𝐴)/(1 + π‘π‘œπ‘‘2 𝐴))=((1 βˆ’tan⁑〖 𝐴〗)/(1 βˆ’cot⁑ 𝐴))^2=π‘‘π‘Žπ‘›2 𝐴 Solving ((𝟏 + π’•π’‚π’πŸ 𝑨)/(𝟏 + π’„π’π’•πŸ 𝑨)) ((1 + π‘‘π‘Žπ‘›2 𝐴)/(1 + π’„π’π’•πŸ 𝐴)) = ((1 + π‘‘π‘Žπ‘›2 𝐴))/(((1+ 𝟏/(π’•π’‚π’πŸ 𝑨)) ) = ((1 + π‘‘π‘Žπ‘›2 𝐴))/(((tan^2⁑𝐴 + 1))/(tan^2⁑𝐴 ))= (π‘‘π‘Žπ‘›2 𝐴 (1 + π‘‘π‘Žπ‘›2 𝐴))/((π‘‘π‘Žπ‘›2 𝐴 + 1)) = tan2 A = R.H.S Solving ((πŸβˆ’ 𝒕𝒂𝒏⁑𝑨)/(πŸβˆ’ 𝒄𝒐𝒕⁑𝑨 ))^𝟐 ((1βˆ’ tan⁑𝐴)/(1βˆ’ 𝒄𝒐𝒕⁑𝑨 ))^2 = ((1 βˆ’ tan⁑〖 𝐴〗)/(1 βˆ’ 𝟏/𝒕𝒂𝒏⁑〖 𝑨〗 ) " " )^2 = (((1 βˆ’ tan⁑〖 𝐴)γ€—)/(((tan⁑〖 𝐴 βˆ’1γ€— ))/tan⁑〖 𝐴〗 ))^2 = (tan⁑〖 𝐴(1 βˆ’ tan⁑〖 𝐴)γ€— γ€—/( (tan⁑〖 𝐴 βˆ’1)γ€— ))^2 = (tan⁑〖 𝐴(1 βˆ’ tan⁑〖 𝐴)γ€— γ€—/(βˆ’(1 βˆ’ tan⁑〖 𝐴)γ€— ))^2 = (βˆ’tan⁑𝐴 )^2 = tan2 A = RHS Therefore, ((1 + π‘‘π‘Žπ‘›2 𝐴)/(1 + π‘π‘œπ‘‘2 𝐴))=((1 βˆ’ tan⁑〖 𝐴〗)/(1 βˆ’ cot⁑ 𝐴))^2=π‘‘π‘Žπ‘›2 𝐴 H\ence proved

  1. Chapter 8 Class 10 Introduction to Trignometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo