Check sibling questions


Transcript

Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (ix) (cosec A – sin A)(sec A – cos A) = 1/(π‘‘π‘Žπ‘› 𝐴 +cot⁑ 𝐴) [Hint : Simplify LHS and RHS separately] Solving L.H.S (cosec A – sin A) (sec A – cos A) = (1/sin⁑〖 𝐴〗 βˆ’ sin⁑𝐴 )(1/cos⁑〖 𝐴〗 βˆ’ cos⁑ 𝐴) = ((𝟏 βˆ’ π’”π’Šπ’πŸ 𝑨))/sin⁑〖 𝐴〗 Γ— ((𝟏 βˆ’ π’„π’π’”πŸ 𝑨))/cos⁑〖 𝐴〗 We know that cos2 ΞΈ + sin2 ΞΈ = 1 So, cos2 ΞΈ = 1 – sin2 ΞΈ sin2 ΞΈ = 1 – cos2 ΞΈ = π’„π’π’”πŸπ‘¨/sin⁑〖 𝐴〗 Γ— (π’”π’Šπ’πŸ 𝑨)/cos⁑〖 𝐴〗 = sin A cos A Solving R.H.S 1/(π‘‘π‘Žπ‘› 𝐴 + cot⁑ 𝐴) = 1/(sin⁑𝐴/cos⁑𝐴 + cos⁑𝐴/sin⁑𝐴 ) = 1/(sin⁑〖𝐴 (sin⁑〖𝐴) + cos⁑〖𝐴 (cos⁑〖𝐴)γ€— γ€— γ€— γ€—/cos⁑〖𝐴 sin⁑𝐴 γ€— ) = 1/((𝑠𝑖𝑛2 𝐴 + π‘π‘œπ‘ 2 𝐴)/cos⁑〖𝐴 sin⁑𝐴 γ€— ) = 1/((𝑠𝑖𝑛2 𝐴 + π‘π‘œπ‘ 2 𝐴)/cos⁑〖𝐴 sin⁑𝐴 γ€— ) = sin⁑〖 𝐴 . cos⁑ 𝐴〗/(𝑠𝑖𝑛2 𝐴 + π‘π‘œπ‘ 2 𝐴) As sin2 A + cos2 A = 1 = sin⁑〖 𝐴 . γ€– cos〗⁑ 𝐴〗/1 = sin A cos A = L.H.S Hence proved

  1. Chapter 8 Class 10 Introduction to Trignometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo