Check sibling questions

 


Transcript

Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (vi) √((1 + sin⁑𝐴 )/(1 βˆ’γ€– sin〗⁑𝐴 )) = sec A + tan A Solving L.H.S √((𝟏 + π’”π’Šπ’β‘π‘¨ )/(𝟏 βˆ’γ€– π’”π’Šπ’γ€—β‘π‘¨ )) Rationalizing denominator Multiplying (1 + sin A) in numerator and denominator = √(((𝟏 + 𝐬𝐒𝐧⁑𝑨)(𝟏 + π’”π’Šπ’β‘γ€–π‘¨)γ€— )/((𝟏 βˆ’ 𝐬𝐒𝐧⁑𝑨)(𝟏 + π’”π’Šπ’β‘γ€–π‘¨)γ€— )) = √(((1 + sin⁑𝐴 )2 )/(12 βˆ’ 𝑠𝑖𝑛2𝐴)) = √(((1 + sin⁑𝐴 )2 )/(1 βˆ’ 𝑠𝑖𝑛2𝐴)) =√(((1 + sin⁑𝐴)2 )/(π’„π’π’”πŸ 𝑨)) =√(((1 + sin⁑𝐴 )/(π‘π‘œπ‘  𝐴))^2 ) = (𝟏 + π’”π’Šπ’β‘γ€– 𝑨〗)/𝒄𝒐𝒔⁑〖 𝑨〗 = 1/cos⁑〖 𝐴〗 + sin⁑〖 𝐴〗/cos⁑〖 𝐴〗 = sec A + tan A = R.H.S Hence proved

  1. Chapter 8 Class 10 Introduction to Trignometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo