Last updated at Feb. 14, 2025 by Teachoo
Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (iii)tanθ/(〖1 − cot〗θ " " )+cotθ/(1 − tanθ ) =1+ sec θ cosec θ [Hint : Write the expression in terms of sin θ and cos θ] Taking L.H.S tanθ/(〖1 − cot〗θ " " )+cotθ/(1 − tanθ ) Converting everything into sin θ and cos θ = (sinθ/cosθ )/(1 − (cosθ/sinθ ) )+((cosθ/sinθ ))/(1 − (sinθ/cosθ ) ) = (sinθ/cosθ )/(((sinθ − cosθ)/sinθ ) )+((cosθ/sinθ ))/( ((cosθ − sinθ)/cosθ ) ) = sinθ/cosθ × sinθ/(sinθ −〖 cos〗θ ) +cosθ/sinθ ×cosθ/(cosθ −〖 sin〗θ ) = sin2θ/(〖cosθ ( sin〗θ −〖 cos〗〖θ )〗 ) + cos2θ/(sin〖θ 〗〖(𝐜𝐨𝐬𝜽 〗 −〖 𝒔𝒊𝒏〗〖𝜽 )〗 ) = sin2θ/(〖cosθ ( sin〗θ −〖 cos〗〖θ )〗 ) + cos2θ/(〖sin〖θ ×〗 − ( 𝐬𝐢𝐧〗𝜽 −〖 𝒄𝒐𝒔〗〖𝜽 )〗 ) = sin2θ/(〖cosθ (sin〗θ −〖 cos〗〖θ )〗 ) − cos2θ/(〖sinθ ( sin〗θ − cos〖θ )〗 ) = (𝑠𝑖𝑛2𝜃 × (𝑠𝑖𝑛𝜃 ) −〖 𝑐𝑜𝑠2〗𝜃 × (𝑐𝑜𝑠𝜃 ))/(〖𝑐𝑜𝑠𝜃 ( 𝑠𝑖𝑛〗𝜃 −〖 𝑐𝑜𝑠〗〖𝜃 )𝑠𝑖𝑛𝜃 〗 ) = (𝐬𝐢𝐧𝟑𝜽 − 𝐜𝐨𝐬𝟑𝜽 )/(〖cosθ sinθ ( sin〗θ −〖 cos〗〖θ)〗 ) Since a3 – b3 = (a – b) (a2 + b2 + ab) Putting a = sin θ , b = cos θ = (〖(sin〗θ − cosθ)〖(sin2〗θ+ cos2〖θ +cosθ sinθ 〗))/(〖cosθ sinθ ( sin〗θ −〖 cos〗〖θ ) 〗 ) = (〖(sin2〗θ + cos2〖θ + cosθ sinθ 〗))/(cosθ sinθ ) = (〖(𝐬𝐢𝐧𝟐〗𝜽 + 𝐜𝐨𝐬𝟐〖𝜽 ) +〖 cos〗θ sinθ 〗)/(cosθ sinθ ) As cos2 A + sin2 A = 1 = (𝟏 + cosθ sinθ)/(cosθ sinθ ) = (1 )/(cosθ sinθ ) + (cosθ sinθ)/(cosθ sinθ ) = (𝟏 )/𝒄𝒐𝒔𝜽 × (𝟏 )/𝒔𝒊𝒏𝜽 + 1 = sec θ × cosec θ + 1 = 1 + sec θ cosec θ = R.H.S ∴ L.H.S = R.H.S Hence proved
Ex 8.3
Ex 8.3, 2 Important
Ex 8.3, 3 (i) [MCQ]
Ex 8.3, 3 (ii) [MCQ] Important
Ex 8.3, 3 (iii) [MCQ] Important
Ex 8.3, 3 (iv) [MCQ]
Ex 8.3, 4 (i) Important
Ex 8.3, 4 (ii)
Ex 8.3, 4 (iii) Important You are here
Ex 8.3, 4 (iv) Important
Ex 8.3, 4 (v) Important
Ex 8.3, 4 (vi)
Ex 8.3, 4 (vii) Important
Ex 8.3, 4 (viii)
Ex 8.3, 4 (ix) Important
Ex 8.3, 4 (x)
Question 1 (i) Important
Question 1 (ii)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo