Example 18  Show curves, slope of tangent is x2 + y2 / 2xy - Solving homogeneous differential equation

Slide31.JPG
Slide32.JPG Slide33.JPG Slide34.JPG Slide35.JPG Slide36.JPG Slide37.JPG Slide38.JPG

  1. Class 12
  2. Important Question for exams Class 12
Ask Download

Transcript

Example 18 Show that the family of curves for which the slope of the tangent at any point 𝑥 , 𝑦﷯ on its 𝑥﷮2﷯+ 𝑦﷮2﷯﷮2𝑥𝑦﷯ , is given by 𝑥﷮2﷯− 𝑦﷮2﷯=𝑐𝑥 We know that the slope of the tangent at 𝑥 ,𝑦﷯ of a curve is 𝑑𝑦﷮𝑑𝑥﷯ Given slope of tangent at 𝑥 , 𝑦﷯ is 𝑥﷮2﷯ + 𝑦﷮2﷯﷮2𝑥𝑦﷯ Therefore 𝑑𝑦﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑦﷮2﷯﷮2𝑥𝑦﷯ Step 1: Find 𝑑𝑦﷮𝑑𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑦﷮2﷯﷮2𝑥𝑦﷯ Step 2: Put 𝑑𝑦﷮𝑑𝑥﷯= F 𝑥 𝑦﷯ So, F 𝑥 𝑦﷯= 𝑥﷮2﷯ + 𝑦﷮2﷯﷮2𝑥𝑦﷯ Finding F 𝜆𝑥 ,𝜆𝑦﷯ F 𝜆𝑥 ,𝜆𝑦﷯= 𝜆𝑥﷯﷮2﷯ + 𝜆𝑦﷯﷮2﷯﷮2 𝜆𝑥﷯ 𝜆𝑦﷯﷯ = 𝜆﷮2﷯ 𝑥﷮2﷯ + 𝜆﷮2﷯ 𝑦﷮2﷯﷮2 𝜆﷮2﷯ 𝑥𝑦﷯ = 𝜆﷮2﷯ 𝑥﷮2﷯ + 𝑦﷮2﷯﷯﷮ 𝜆﷮2﷯ 2𝑥𝑦﷯ = 𝑥﷮2﷯ + 𝑦﷮2﷯﷯﷮ 2𝑥𝑦﷯ = F 𝑥 , 𝑦﷯ So , F 𝜆𝑥 ,𝜆𝑦﷯= F 𝑥 , 𝑦﷯ =𝜆° F 𝑥 , 𝑦﷯ So , F 𝑥 , 𝑦﷯ is homogeneous function of degree zero, Therefore given equation is a homogeneous differential equation Step 3: Solving 𝑑𝑦﷮𝑑𝑥﷯ by putting 𝑦=𝑣𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑦﷮2﷯﷮2𝑥𝑦﷯ Put 𝑦=𝑣𝑥 Diff. w.r.t. 𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑﷮𝑑𝑥﷯ 𝑣𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯=𝑥 𝑑𝑣﷮𝑑𝑥﷯+𝑣 𝑑𝑥﷮𝑑𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯= 𝑥𝑑𝑣﷮𝑑𝑥﷯+𝑣 Putting values 𝑜𝑓 𝑑𝑦﷮𝑑𝑥﷯ and y in (i) v + 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + (𝑣 𝑥)﷮2﷯﷮2𝑥 (𝑣𝑥)﷯ v + 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑣﷮2﷯ 𝑥﷮2﷯﷮2 𝑥﷮2﷯ 𝑣﷯ − 𝑣 v + 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑣﷮2﷯ 𝑥﷮2﷯ − 2 𝑥﷮2﷯ 𝑣 . 𝑣﷮2 𝑥﷮2﷯ 𝑣﷯ v + 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑣﷮2﷯ 𝑥﷮2﷯ − 2 𝑥﷮2﷯ 𝑣﷮2﷯﷮2 𝑥﷮2﷯ 𝑣﷯ v + 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑣﷮2﷯ 𝑥﷮2﷯ − 2 𝑣﷮2﷯ 𝑥﷮2﷯﷮2 𝑥﷮2﷯ 𝑣﷯ 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ + 𝑣﷮2﷯ 𝑥﷮2﷯ − 2 𝑣﷮2﷯ 𝑥﷮2﷯﷮2 𝑥﷮2﷯ 𝑣﷯ 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ − 𝑣﷮2﷯ 𝑥﷮2﷯﷮2 𝑥﷮2﷯ 𝑣﷯ 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 𝑥﷮2﷯ 1 − 𝑣﷮2﷯﷯﷮ 𝑥﷮2﷯. 2𝑣﷯ 𝑥 𝑑𝑣﷮𝑑𝑥﷯= 1 − 𝑣﷮2﷯﷮2𝑣﷯ 𝑑𝑣﷮𝑑𝑥﷯= 1 − 𝑣﷮2﷯﷮2𝑣﷯ . 1﷮𝑥﷯ 2𝑣 𝑑𝑣﷮1 − 𝑣﷮2﷯﷯= 𝑑𝑥﷮𝑥﷯ 2𝑣 𝑑𝑣﷮− 𝑣﷮2﷯ − 1﷯﷯= 𝑑𝑥﷮𝑥﷯ 2𝑣 𝑑𝑣 ﷮ 𝑣﷮2﷯ − 1﷯= −𝑑𝑥﷮𝑥﷯ Integrating Both Sides ﷮﷮ 2𝑣 𝑑𝑣 ﷮ 𝑣﷮2﷯−1﷯= ﷮﷮ −𝑑𝑥﷮𝑥﷯﷯﷯ ﷮﷮ 2𝑣 𝑑𝑣 ﷮ 𝑣﷮2﷯ − 1﷯= ﷮﷮ −𝑑𝑥﷮𝑥﷯﷯﷯ ﷮﷮ 2𝑣 ﷮ 𝑣﷮2﷯ − 1﷯﷯𝑑𝑣=−𝑙𝑜𝑔 𝑥﷯+𝑐 Solving ﷮﷮ 𝟐𝒗 ﷮ 𝒗﷮𝟐﷯ − 𝟏﷯﷯𝒅𝒗 Put 𝑣﷮2﷯−1=𝑡 Diff. w.r.t. 𝑣 𝑑 𝑣﷮2﷯ −1﷯﷮𝑑𝑣﷯= 𝑑𝑡﷮𝑑𝑣﷯ 2𝑣= 𝑑𝑡﷮𝑑𝑣﷯ 𝑑𝑣= 𝑑𝑡﷮2𝑣﷯ ﷮﷮ 2𝑣﷮ 𝑣﷮2﷯ −1﷯﷯𝑑𝑣 = ﷮﷮ 2𝑣﷮𝑡﷯ ﷯ 𝑑𝑡﷮2𝑣﷯ = ﷮﷮ 𝑑𝑡﷮𝑡﷯﷯ = log 𝑡﷯ Putting t = v2 – 1 = log 𝑣﷮2﷯−1﷯ From (2) ﷮﷮ 2𝑣 ﷮ 𝑣﷮2﷯ − 1﷯﷯𝑑𝑣=−𝑙𝑜𝑔 𝑥﷯+𝑐 log 𝑣﷮2﷯−1﷯=−𝑙𝑜𝑔 𝑥﷯+𝑐1 Putting 𝑣𝑥=𝑦 or 𝑣= 𝑦﷮𝑥﷯ log 𝑦﷮𝑥﷯﷯﷮2﷯−1﷯=−𝑙𝑜𝑔 𝑥﷯+𝑐1 log 𝑦﷮𝑥﷯﷯﷮2﷯−1﷯=−𝑙𝑜𝑔 𝑥﷯+𝑐1 log 𝑦﷮𝑥﷯﷯﷮2﷯−1﷯+𝑙𝑜𝑔 𝑥﷯=+𝑐1 𝑙𝑜𝑔 𝑦﷮𝑥﷯﷯﷮2﷯−1﷯𝑥﷯=𝑐1 𝑙𝑜𝑔 𝑦﷮2﷯﷮ 𝑥﷮2﷯﷯ −1﷯𝑥﷯=𝑐1 Putting 𝑐1= log﷮𝑐﷯ 𝑙𝑜𝑔 𝑦﷮2﷯﷮ 𝑥﷮2﷯﷯−1﷯𝑥﷯= log﷮ ﷯𝑐1 Removing log 𝑦﷮2﷯﷮ 𝑥﷮2﷯﷯ −1﷯𝑥=𝐶1 𝑥 𝑦﷮2﷯﷮ 𝑥﷮2﷯﷯−𝑥=𝐶1 𝑦﷮2﷯﷮𝑥﷯−𝑥=𝐶1 𝑦﷮2﷯− 𝑥﷮2﷯﷮𝑥﷯=𝐶1 𝑦﷮2﷯− 𝑥﷮2﷯=𝐶1𝑥 𝑥﷮2﷯− 𝑦﷮2﷯=−𝐶1𝑥 Put 𝑐=−𝐶1 𝒙﷮𝟐﷯− 𝒚﷮𝟐﷯=𝒄𝒙 Hence Proved

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
Jail