# Ex 9.6, 14

Last updated at March 11, 2017 by Teachoo

Last updated at March 11, 2017 by Teachoo

Transcript

Ex 9.6, 14 For each of the differential equations given in Exercises 13 to 15 , find a particular solution satisfy the given condition : 1+ 2 +2 = 1 1+ 2 ; =0 when =1 (1 + x2) + 2xy = 1 1 + 2 Divide both sides by (1+ 2) + 2 1 + 2 = 1 1 + 2 .(1 + 2) + 2 1 + 2 y = 1 1 + 2 Comparing with + Py = Q P = 2 1 + 2 & Q = 1 1 + 2 2 Find Integrating factor IF = IF = 2 1 + 2 Let 1+ 2 = t Diff . w.r.t. x 2x = t dx = 2 IF = e 2 2 IF = e IF = e IF = t IF = 1 + x2 Step 4 : Solution of the deferential equation y I.F = . Putting values y (1 + x2) = 1 1 + 2 2 (1 + x2).dx y (1 + x2) = 1 1 + 2 dx y (1 + x2) = tan 1 + Given that y = 0 when x = 1 Putting y = 0 and x = 1 in (1) y (1 + x2) = tan 1 x + c 0(1 + 12) = tan 1 (1)+ c 0 = 4 + C C = 4 Putting value of C in (2) y (1 + x2) = tan-1 x + c y (1 + x2) = tan-1 x

Chapter 9 Class 12 Differential Equations

Example 1
Important

Ex 9.1, 11 Important

Ex 9.1, 12 Important

Example 7 Important

Ex 9.3, 7 Important

Ex 9.3, 10 Important

Example 13 Important

Ex 9.4, 14 Important

Example 17 Important

Example 18 Important

Ex 9.5, 8 Important

Ex 9.5, 15 Important

Example 22 Important

Ex 9.6, 7 Important

Ex 9.6, 13 Important

Ex 9.6, 14 Important You are here

Example 25 Important

Example 27 Important

Example 28 Important

Misc 6 Important

Misc 11 Important

Misc 12 Important

Misc 13 Important

Class 12

Important Question for exams Class 12

- Chapter 1 Class 12 Relation and Functions
- Chapter 2 Class 12 Inverse Trigonometric Functions
- Chapter 3 Class 12 Matrices
- Chapter 4 Class 12 Determinants
- Chapter 5 Class 12 Continuity and Differentiability
- Chapter 6 Class 12 Application of Derivatives
- Chapter 7 Class 12 Integrals
- Chapter 8 Class 12 Application of Integrals
- Chapter 9 Class 12 Differential Equations
- Chapter 10 Class 12 Vector Algebra
- Chapter 11 Class 12 Three Dimensional Geometry
- Chapter 12 Class 12 Linear Programming
- Chapter 13 Class 12 Probability

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.