Check sibling questions

Misc 2 - Let f(n) = n - 1, if is odd, f(n) = n + 1, if even - Finding Inverse

Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 2
Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 3 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 4 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 5 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 6 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 7 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 8 Misc 2  - Chapter 1 Class 12 Relation and Functions - Part 9

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 2(Method 1) Let f: W โ†’ W be defined as f(n) = n โˆ’ 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers. f(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Step 1 Let f(n) = y , such that y โˆˆ W n = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Let g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ where g: W โ†’ W Step 2: gof = g(f(n)) โˆด gof = n = IW Now, f(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ & g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Step 3: fog = f(g(y)) โˆด fog = y = IW Since gof = IW and fog =IW f is invertible and inverse of f = g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Now g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Replacing y with n g(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ = f(n) โˆด Inverse of f is f itself Misc 2 (Method 2) Let f: W โ†’ W be defined as f(n) = n โˆ’ 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers. f(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ f is invertible if f is one-one and onto Check one-one There can be 3 cases โ€ข x1 & x2 both are odd โ€ข x1 & x2 both are even โ€ข x1 is odd & x2 is even If x1 & x2 are both odd f(x1) = x1 + 1 f(x2) = x2 + 1 Putting f(x1) = f(x2) x1 + 1 = x2 + 1 x1 = x2 If x1 & x2 are both are even f(x1) = x1 โ€“ 1 f(x2) = x2 โ€“ 1 If f(x1) = f(x2) x1 โ€“ 1 = x2 โ€“ 1 x1 = x2 If x1 is odd and x2 is even f(x1) = x1 + 1 f(x2) = x2 โ€“ 1 If f(x1) = f(x2) x1 + 1 = x2 โ€“ 1 x2 โ€“ x1 = 2 which is impossible as difference between even and odd number can never be even Hence, if f(x1) = f(x2) , x1 = x2 โˆด function f is one-one Check onto f(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Let f(n) = y , such that y โˆˆ W n = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Hence, if y is a whole number, n will also be a whole number i.e. n โˆˆ W Thus, f is onto. Finding inverse f(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ For finding inverse, we put f(n) = y and find n in terms of y We have done that while proving onto n = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ โˆด Inverse of f = g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ where g: W โ†’ W Now g(y) = ๐‘ฆโˆ’1, ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘ฆ+1 , ๐‘–๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ Replacing y with n g(n) = ๐‘›โˆ’1 , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘๏ทฎ๐‘›+1, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›๏ทฏ๏ทฏ = f(n) โˆด Inverse of f is f itself

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.