Example 22 - Chapter 1 Class 12 Relation and Functions (Term 1)
Last updated at July 5, 2019 by
Last updated at July 5, 2019 by
Transcript
Example 22 Let f : {1, 2, 3} {a, b, c} be one-one and onto function given by f (1) = a, f(2) = b and f (3) = c. Show that there exists a function g : {a, b, c} {1, 2, 3} such that gof= IX and fog = IY, where, X = {1, 2, 3} and Y = {a, b, c}. Finding gof So, gof = { (1, 1) , (2, 2), (3, 3) } = IX = Identity function on set X = {1, 2, 3} Finding fog fog = { (a, a) , (b, b), (c, c) } = IY = Identity function on set Y = {a, b, c}
Finding Inverse
Inverse of a function
How to check if function has inverse?
Example 22 Deleted for CBSE Board 2022 Exams You are here
Ex 1.3, 5 (i) Deleted for CBSE Board 2022 Exams
How to find Inverse?
Example 28 (a) Deleted for CBSE Board 2022 Exams
Misc 11 (i) Important Deleted for CBSE Board 2022 Exams
Ex 1.3, 11 Deleted for CBSE Board 2022 Exams
Example 27 Important Deleted for CBSE Board 2022 Exams
Misc 1 Deleted for CBSE Board 2022 Exams
Ex 1.3 , 6 Deleted for CBSE Board 2022 Exams
Ex 1.3, 14 (MCQ) Important Deleted for CBSE Board 2022 Exams
Example 23 Important Deleted for CBSE Board 2022 Exams
Misc 2 Deleted for CBSE Board 2022 Exams
Ex 1.3 , 4 Deleted for CBSE Board 2022 Exams
Example 24 Deleted for CBSE Board 2022 Exams
Ex 1.3 , 8 Important Deleted for CBSE Board 2022 Exams
Example 25 Important Deleted for CBSE Board 2022 Exams
Ex 1.3 , 9 Important Deleted for CBSE Board 2022 Exams
Finding Inverse
About the Author