
Last updated at Dec. 17, 2018 by Teachoo
Transcript
Ex 1.3 , 14 Let f : R โ {(โ4)/3} โ R be a function defined as . f (x) = 4๐ฅ/(3๐ฅ + 4) The inverse of f is map g: Range f โ R โ {(โ4)/3}given by (A) g (y) = 3๐ฆ/(3โ4๐ฆ) (B) g (y) = 4๐ฆ/(4โ3๐ฆ) (C) g (y) = 4๐ฆ/(3โ4๐ฆ) (D) g (y) = 3๐ฆ/(4โ3๐ฆ) f(x) = 4๐ฅ/(3๐ฅ + 4) Calculating inverse Take f(x) = y Hence, equation becomes y = 4๐ฅ/(3๐ฅ + 4) y(3x + 4) = 4x 3xy + 4y = 4x 3xy โ 4x = โ 4y x(3y โ 4) = โ 4y x = (โ4๐ฆ)/(3๐ฆ โ 4) x = (โ4๐ฆ)/(โ1(โ3๐ฆ + 4)) x = 4๐ฆ/((4 โ 3๐ฆ)) So, inverse of f = 4๐ฆ/((4 โ 3๐ฆ)) โ g(y) = 4๐ฆ/((4 โ 3๐ฆ)) Hence, B is the correct answer
Finding Inverse
Inverse of a function
How to check if function has inverse?
Example 22
Ex 1.3, 5
How to find Inverse?
Example 28 Important
Misc 11
Ex 1.3, 11 Important
Example 27
Example 23 Important
Misc 1
Ex 1.3 , 6 Important
Ex 1.3 , 14 Important You are here
Misc 2
Ex 1.3 , 4
Example 24
Ex 1.3 , 8
Example 25 Important
Ex 1.3 , 9 Important
About the Author