Example 20 - Equation of plane passing through intersection

Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2
Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3 Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 4

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 10 Find the vector equation of the plane passing through the intersection of the planes 𝑟 ⃗ . (𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂) = 6 and 𝑟 ⃗ . (2𝑖 ̂ + 3𝑗 ̂ + 4𝑘 ̂) = − 5, and the point (1, 1, 1).The vector equation of a plane passing through the intersection of planes 𝑟 ⃗. (𝑛1) ⃗ = d1 and 𝑟 ⃗. (𝑛2) ⃗ = d2 and also through the point (x1, y1, z1) is 𝒓 ⃗.((𝒏𝟏) ⃗ + 𝜆(𝒏𝟐) ⃗) = d1 + 𝜆d2 Given, the plane passes through 𝒓 ⃗.(𝒊 ̂ + 𝒋 ̂ + 𝒌 ̂) = 6 Comparing with 𝑟 ⃗.(𝑛1) ⃗ = d1, (𝒏𝟏) ⃗ = 𝒊 ̂ + 𝒋 ̂ + 𝒌 ̂ & d1 = 6 𝒓 ⃗.(2𝒊 ̂ + 3𝒋 ̂ + 4𝒌 ̂) = −5 –𝑟 ⃗.(2𝑖 ̂ + 3𝑗 ̂ + 4𝑘 ̂) = 5 𝑟 ⃗ .(− 2𝑖 ̂ − 3𝑗 ̂ − 4𝑘 ̂) = 5 Comparing with 𝑟 ⃗.(𝑛2) ⃗ = d2 (𝒏𝟐) ⃗ = − 2𝒊 ̂ − 3𝒋 ̂ − 4𝒌 ̂ & d2 = 5 Equation of plane is 𝑟 ⃗. [(𝑖 ̂+𝑗 ̂+𝑘 ̂ )+"𝜆" (−2𝑖 ̂−3𝑗 ̂−4𝑘 ̂)] = 6 + 𝜆5 𝒓 ⃗. [(𝒊 ̂" " +𝒋 ̂" " +𝒌 ̂ )−"𝜆" (𝟐𝒊 ̂+𝟑𝒋 ̂+𝟒𝒌 ̂)] = 6 + 5𝜆 Now to find 𝜆 , put 𝒓 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂). [(𝑖 ̂+𝑗 ̂+𝑘 ̂ )−"𝜆" (2𝑖 ̂+3𝑗 ̂+4𝑘 ̂)] = 5𝜆 + 6 (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂).(𝑖 ̂+𝑗 ̂+𝑘 ̂ ) − 𝜆 (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂).(2𝑖 ̂+3𝑗 ̂+4𝑘 ̂) = 5𝜆 + 6 (x × 1) + (y × 1) + (z × 1) − 𝜆[(𝑥×2)+(𝑦×3)+(𝑧×4)] = 5𝜆 + 6 x + y + z − 𝜆[2𝑥+3𝑦+4𝑧] = 5𝜆 + 6 x + y + z − 2𝜆𝑥 − 3𝜆y − 4𝜆z = 5𝜆 + 6 (1 − 2𝜆)x + (1 − 3𝜆)y + (1 − 4𝜆) z = 5𝜆 + 6 Since the plane passes through (1, 1, 1), Putting (1, 1, 1) in (2) (1 − 2𝜆)x + (1 − 3𝜆)y + (1 − 4𝜆) z = 5𝜆 + 6 (1 −2𝜆) × 1 + (1 − 3𝜆) × 1 + (1 − 4𝜆) × 1 = 5𝜆 + 6 1 −2𝜆 + 1 − 3𝜆 + 1 − 4𝜆= 5𝜆 + 6 3 − 9𝜆 = 5𝜆 + 6 −14𝜆 = 3 ∴ 𝜆 = (−𝟑)/𝟏𝟒 Putting value of 𝜆 in (1), 𝑟 ⃗. [(𝑖 ̂" " +" " 𝑗 ̂" " +" " 𝑘 ̂ )−(( −3)/14)(2𝑖 ̂+3𝑗 ̂+"4" 𝑘 ̂)]= 6 + 5 × ( −3)/14 𝑟 ⃗. [(𝑖 ̂+𝑗 ̂+" " 𝑘 ̂ )+3/14(2𝑖 ̂+3𝑗 ̂+"4" 𝑘 ̂)]= 6 − 15/14 𝑟 ⃗. [𝑖 ̂+𝑗 ̂" " +𝑘 ̂+ 6/14 𝑖 ̂+9/14 𝑗 ̂+12/14 𝑘 ̂ ]= 69/14 𝑟 ⃗. [(1+6/14) 𝑖 ̂ +(1+9/14) 𝑗 ̂+(1+12/14) 𝑘 ̂ ]= 69/14 𝑟 ⃗. [20/14 𝑖 ̂ + 23/14 𝑗 ̂ + 26/14 𝑘 ̂ ]= 69/14 𝑟 ⃗. [1/14(20𝑖 ̂+23𝑗 ̂+26𝑘 ̂)]= 69/14 1/14 𝑟 ⃗. (20𝑖 ̂ + 23𝑗 ̂ + 26𝑘 ̂) = 69/14 𝑟 ⃗. (20𝑖 ̂ + 23𝑗 ̂ + 26𝑘 ̂) = 69 Therefore, the vector equation of the required plane is 𝒓 ⃗.(𝟐𝟎𝒊 ̂ + 𝟐𝟑𝒋 ̂ + 𝟐𝟔𝒌 ̂) = 𝟔𝟗

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.