Slide50.JPG

Slide51.JPG
Slide52.JPG

Share on WhatsApp

Transcript

Ex 11.2, 15 Find the shortest distance between the lines whose vector equations are š‘Ÿ āƒ— = (1 āˆ’ t) š‘– Ģ‚ + (t āˆ’ 2) š‘— Ģ‚ + (3 āˆ’ 2t) š‘˜ Ģ‚ and š‘Ÿ āƒ— = (s + 1) š‘– Ģ‚ + (2s – 1) š‘— Ģ‚ – (2s + 1) š‘˜ Ģ‚ Shortest distance between lines with vector equations š‘Ÿ āƒ— = (š‘Ž1) āƒ— + šœ† (š‘1) āƒ— and š‘Ÿ āƒ— = (š‘Ž2) āƒ— + šœ‡(š‘2) āƒ— is |("(" (š’ƒšŸ) āƒ—Ć— (š’ƒšŸ) āƒ—")" ."(" (š’‚šŸ) āƒ— āˆ’ (š’‚šŸ) āƒ—")" )/|(š’ƒšŸ) āƒ— Ɨ (š’ƒšŸ) āƒ— | | š’“ āƒ— = (šŸ āˆ’ t) š’Š Ģ‚ + (š’•āˆ’šŸ)š’‹ Ģ‚ + (3 āˆ’ 2t) š’Œ Ģ‚ = 1š‘– Ģ‚ āˆ’ tš‘– Ģ‚ + tš‘— Ģ‚ āˆ’ 2š‘— Ģ‚ + 3š‘˜ Ģ‚ āˆ’ 2tš‘˜ Ģ‚ = (1š‘– Ģ‚ āˆ’ 2š‘— Ģ‚ + 3š‘˜ Ģ‚) + t(āˆ’1š‘– Ģ‚ + 1š‘— Ģ‚ āˆ’ 2š‘˜ Ģ‚) Comparing with š‘Ÿ āƒ— = (š‘Ž1) āƒ— + t (š‘1) āƒ—, (š‘Ž1) āƒ— = 1š‘– Ģ‚ – 2š‘— Ģ‚ + 3š‘˜ Ģ‚ & (š‘1) āƒ— = āˆ’ 1š‘– Ģ‚ + 1š‘— Ģ‚ āˆ’ 2š‘˜ Ģ‚ š’“ āƒ— = (š’” + 1) š’Š Ģ‚ + (šŸš’”" āˆ’ " šŸ)š’‹ Ģ‚ āˆ’ (2s + 1) š’Œ Ģ‚ = sš‘– Ģ‚ + 1š‘– Ģ‚ + 2sš‘— Ģ‚ āˆ’ 1š‘— Ģ‚ āˆ’ 2sš‘˜ Ģ‚ āˆ’ 1š‘˜ Ģ‚ = (1š‘– Ģ‚ āˆ’ 1š‘— Ģ‚ āˆ’ 1š‘˜ Ģ‚) + s(1š‘– Ģ‚ + 2š‘— Ģ‚ āˆ’ 2š‘˜ Ģ‚) Comparing with š‘Ÿ āƒ— = (š‘Ž2) āƒ— + s (š‘2) āƒ—, (š‘Ž2) āƒ— = 1š‘– Ģ‚ āˆ’ 1š‘— Ģ‚ āˆ’ 1š‘˜ Ģ‚ & (š‘2) āƒ— = 1š‘– Ģ‚ + 2š‘— Ģ‚ āˆ’ 2š‘˜ Ģ‚ Now, ((š’‚šŸ) āƒ— āˆ’ (š’‚_šŸ ) āƒ—) = (1š‘– Ģ‚ āˆ’ 1š‘— Ģ‚ āˆ’ 1š‘˜ Ģ‚) āˆ’ (1š‘– Ģ‚ āˆ’ 2š‘— + 3š‘˜ Ģ‚) = (1 āˆ’ 1) š‘– Ģ‚ + ( āˆ’ 1 + 2)š‘— Ģ‚ + ( āˆ’ 1 āˆ’ 3)š‘˜ Ģ‚ = 0š’Š Ģ‚ + 1š’‹ Ģ‚ āˆ’ 4š’Œ Ģ‚ ( (š’ƒ_šŸ ) āƒ—Ć— (š’ƒ_šŸ ) āƒ— ) = |ā– 8(š‘– Ģ‚&š‘— Ģ‚&š‘˜ Ģ‚@ āˆ’1&1& āˆ’2@1&2& āˆ’2)| = š‘– Ģ‚[(1Ć—āˆ’ 2)āˆ’(2Ć—āˆ’ 2)] āˆ’ š‘— Ģ‚[(āˆ’1Ć—āˆ’2)āˆ’(1Ć—āˆ’ 2)] + š‘˜ Ģ‚[(āˆ’ 1Ɨ2)āˆ’(1Ɨ1)] = š‘– Ģ‚[āˆ’2+4] āˆ’ š‘— Ģ‚[2+2] A + š‘˜ Ģ‚[āˆ’2āˆ’1] = 2š’Š Ģ‚ āˆ’ 4š’‹ Ģ‚ āˆ’ 3š’Œ Ģ‚ Magnitude of ((š‘1) āƒ—Ć—(š‘2) āƒ—) = √(22+(āˆ’ 4)2+(āˆ’ 3)2) |(š’ƒšŸ) āƒ—Ć—(š’ƒšŸ) āƒ— | = √(4+16+9) = āˆššŸšŸ— Also, ((š’ƒšŸ) āƒ— Ɨ (š’ƒšŸ) āƒ—) . ((š’‚šŸ) āƒ— – (š’‚šŸ) āƒ—) = (2š‘– Ģ‚ āˆ’ 4š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚) . (0š‘– Ģ‚ + 1š‘— Ģ‚ āˆ’ 4š‘˜ Ģ‚) = (2 Ɨ 0) + (āˆ’4 Ɨ 1) + (āˆ’3 Ɨ āˆ’4) = āˆ’0 + (āˆ’4) + 12 = 8 So, shortest distance = |(((š‘_1 ) āƒ— Ɨ (š‘_2 ) āƒ— ) . ((š‘Ž_2 ) āƒ— Ɨ (š‘Ž_1 ) āƒ— ).)/((š‘_1 ) āƒ— Ɨ (š‘_2 ) āƒ— )| = |8/√29| = šŸ–/āˆššŸšŸ— Therefore, the shortest distance between the given two lines is 8/√29 .

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo