Example 10 - Find area enclosed between two circles: x2+y2=4

Example 10 - Chapter 8 Class 12 Application of Integrals - Part 2
Example 10 - Chapter 8 Class 12 Application of Integrals - Part 3
Example 10 - Chapter 8 Class 12 Application of Integrals - Part 4
Example 10 - Chapter 8 Class 12 Application of Integrals - Part 5 Example 10 - Chapter 8 Class 12 Application of Integrals - Part 6 Example 10 - Chapter 8 Class 12 Application of Integrals - Part 7 Example 10 - Chapter 8 Class 12 Application of Integrals - Part 8 Example 10 - Chapter 8 Class 12 Application of Integrals - Part 9 Example 10 - Chapter 8 Class 12 Application of Integrals - Part 10


Transcript

Question 8 Find the area of the region enclosed between the two circles: 𝑥2+𝑦2=4 and (𝑥 –2)2+𝑦2=4 First we find center and radius of both circles 𝑥^2+ 𝑦^2 = 4 〖(𝑥−0)〗^2 + 〖(𝑦−0)〗^2 = 2^2 Thus, Center = (0, 0) Radius = 2 (𝑥−2)^2 + 𝑦^2 = 4 〖(𝑥−2)〗^2 + 〖(𝑦−0)〗^2 = 2^2 Thus, Center = (2, 0) Radius = 2 Drawing figure Finding point of intersection, A & A’ Solving 𝑥^2 + 𝑦^2 = 4 …(1) (〖𝑥−2)〗^2 + 𝑦^2 = 4 …(2) Comparing (1) & (2) 𝑥^2 + 𝑦^2 = 〖"(x − 2)" 〗^2 + 𝑦^2 𝑥^2 = 〖"(x − 2)" 〗^2 𝑥^2 − 〖"(x − 2)" 〗^2 = 0 (x − (x − 2) (x + (x − 2)) = 0 (x − x + 2) (x + x − 2) = 0 2(2x − 2) = 0 (2x − 2) = 0/2 2x − 2 = 0 2x = 2 x = 2/2 x = 1 Putting x = 1 in (1) 𝑥^2 + 𝑦^2 = 4 1 + 𝑦^2 = 4 𝑦^2 = 4 − 1 𝑦^2 = 3 y = ± √3 Hence A = (1, √3) & A’ = (1, –√3) Also, point D = (1, 0) Area required Area required = Area ACA’D + Area OADA’ Area ACA’D Area ACA’D = 2 Area ADC = 2 ∫_1^2▒〖𝑦 𝑑𝑥〗 Here, 𝑥^2+𝑦^2=4 𝑦^2=4−𝑥^2 𝑦=±√(4−𝑥^2 ) Since Area ADC is in 1st quadrant, value of y will be positive y = √(4−𝑥^2 ) Area ACA’D = 2 ∫_1^2▒〖√(4−𝑥^2 ) 𝑑𝑥〗 =2∫_1^2▒〖√(2^2−𝑥^2 ) 𝑑𝑥〗 =2[𝑥/2 √(2^2−𝑥^2 )+2^2/2 sin^(−1)⁡〖𝑥/2〗 ]_1^2 It is of form ∫1▒〖√(𝑎^2−𝑥^2 ) 𝑑𝑥=1/2 𝑥√(𝑎^2−𝑥^2 )〗+𝑎^2/2 〖𝑠𝑖𝑛〗^(−1)⁡〖𝑥/𝑎+𝑐〗 Replacing a by 2 , we get =〖2[𝑥/2 √(4−𝑥^2 )+2 sin^(−1)⁡〖𝑥/2〗 ]〗_1^2 =2[2/2 √(4−2^2 )+2 sin^(−1)⁡〖2/2−[1/2 √(4−1^2 )+2 sin^(−1)⁡〖1/2〗 ]〗 ] =2[1.√(4−4)+2 sin^(−1)⁡〖1−[1/2 √(4−1)+2 sin^(−1)⁡〖1/2〗 ]〗 ] =2[1.0+2𝜋/2⁡〖1−[1/2 √3+2𝜋/6]〗 ] =2[𝜋−√3/2−𝜋/3] =2[2𝜋/3−√3/2] =𝟒𝝅/𝟑−√𝟑 Area OADA’ Area OADA’ =2 × Area OAD = 2∫_0^1▒〖𝑦 𝑑𝑥〗 Here, (𝑥−2)^2+𝑦^2=4 𝑦^2=4−(𝑥−2)^2 𝑦=±√(4−(𝑥−2)^2 ) Since OAD is in 1st quadrant, value of y will be positive 𝑦=√(4−(𝑥−2)^2 ) Hence, Area OADA’ = 2∫_0^1▒〖√(4−(𝑥−2)^2 ) 𝑑𝑥〗 Putting t = (𝑥−2) Diff. w.r.t. 𝑥 𝑑𝑡/𝑑𝑥=1 𝑑𝑡 =𝑑𝑥 So, Area OADA’ = 2∫_0^1▒〖√(4−(𝑥−2)^2 ) 𝑑𝑥〗 =2∫_(−2)^(−1)▒〖√(4−𝑡^2 ) 𝑑𝑡〗 =2∫_(−2)^(−1)▒〖√(2^2−𝑡^2 ) 𝑑𝑡〗 It is of form ∫1▒〖√(𝑎^2−𝑥^2 ) 𝑑𝑥=1/2 𝑥√(𝑎^2−𝑥^2 )〗+𝑎^2/2 〖𝑠𝑖𝑛〗^(−1)⁡〖𝑥/𝑎+𝑐〗 Replacing a with 2 & x with t, we get =2[𝑡/2 √(2^2−𝑡^2 )+2^2/2 sin^(−1)⁡〖𝑡/2〗 ]_(−2)^(−1) = 2[(−1)/( 2) √(2^2−(−1)^2 )+2 sin^(−1) (−1)/2]−2[(−2)/( 2) √(2^2−(−2)^2 )+2 sin^(−1) (−2)/2] = 2[(−1)/( 2) √(4−1)+2sin^(−1) ((−1)/2)]−2[−1√(4−4)+2sin^(−1) (−1)] = 2[(−1)/( 2)×√3+2 sin^(−1) ((−1)/2)]−2[0+2sin^(−1) (−1)] = 2[(−√3)/( 2)+2 sin^(−1) ((−1)/2)]−2[2 sin^(−1) (−1)] = −√3+4 sin^(−1) ((−1)/2)−4 sin^(−1) (−1) Using sin–1 (–x) = – sin–1 x = −√3−4 sin^(−1) (1/2)+4 sin^(−1) (1) = −√3−4 ×𝜋/6+4×𝜋/2 = −√3−2𝜋/3+2𝜋 = −√3+4𝜋/3 Therefore, Area required = Area ACA’D + Area OADA’ = (4𝜋/3−√3) + ("–" √3 " + " 4𝜋/3) = 𝟖𝝅/𝟑−𝟐√𝟑 square units

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.