Slide33.JPG

Slide34.JPG
Slide35.JPG
Slide36.JPG
Slide37.JPG Slide38.JPG

Go Ad-free

Transcript

Misc 5 (Method 1) Evaluate |■8(𝑥&𝑦&𝑥+𝑦@𝑦&𝑥+𝑦&𝑥@𝑥+𝑦&𝑥&𝑦)| Let ∆ = |■8(𝑥&𝑦&𝑥+𝑦@𝑦&𝑥+𝑦&𝑥@𝑥+𝑦&𝑥&𝑦)| = 𝑥[(𝑥+𝑦)𝑦−𝑥^2 ]−𝑦[𝑦^2−𝑥(𝑥+𝑦)]+(𝑥+𝑦)[𝑥𝑦−(𝑥+𝑦)^2 ] = 𝑥[𝑥𝑦+𝑦^2−𝑥^2 ]−𝑦[𝑦^2−𝑥^2−𝑥𝑦]+(𝑥+𝑦)[𝑥𝑦−𝑥^2−𝑦^2−2𝑥𝑦] = 𝒙[𝒙𝒚+𝒚^𝟐−𝒙^𝟐 ]−𝒚[𝒚^𝟐−𝒙^𝟐−𝒙𝒚]+(𝒙+𝒚)[−𝒙^𝟐−𝒚^𝟐−𝒙𝒚] = 𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑦^3+𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑥𝑦^2−𝑥^2 𝑦−𝑥^2 𝑦−𝑦[𝑦^2−𝑥^2−𝑥𝑦]+(𝑥+𝑦)[−𝑥^2−𝑦^2−𝑥𝑦] = 𝒙[𝒙𝒚+𝒚^𝟐−𝒙^𝟐 ]−𝒚[𝒚^𝟐−𝒙^𝟐−𝒙𝒚]+(𝒙+𝒚)[−𝒙^𝟐−𝒚^𝟐−𝒙𝒚] = 𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑦^3+𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑥𝑦^2−𝑥^2 𝑦−𝑥^2 𝑦−𝑦^3−𝑥𝑦^2 = 𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑦^3+𝑥^2 𝑦+𝑥𝑦^2−𝑥^3−𝑥𝑦^2−𝑥^2 𝑦−𝑥^2 𝑦−𝑦^3−𝑥𝑦^2 = −2𝑥^3−2𝑦^3 = − 2(x3+y3) Hence , ∆ = – 2(𝐱𝟑+𝐲𝟑) Misc 5 (Method 2) Evaluate |■8(𝑥&𝑦&𝑥+𝑦@𝑦&𝑥+𝑦&𝑥@𝑥+𝑦&𝑥&𝑦)| Let ∆ = |■8(𝑥&𝑦&𝑥+𝑦@𝑦&𝑥+𝑦&𝑥@𝑥+𝑦&𝑥&𝑦)| Applying R1→ R1 + R2 + R3 = |■8(𝑥+𝑦+𝑥+𝑦&𝑦+𝑥+𝑦+𝑥&𝑥+𝑦+𝑥+𝑦@𝑦&𝑥+𝑦&𝑥@𝑥+𝑦&𝑥&𝑦)| = |■8(2x+2y&2x+2y&2x+2y@y&x+y&x@x+y&x&y)| = |■8(𝟐(𝐱+𝐲)&𝟐(𝐱+𝐲)&𝟐(𝐱+𝐲)@y&x+y&x@x+y&x&y)| Taking common 2(x + y), from R1 = 𝟐(𝐱+𝐲) |■8(1&1&1@y&x+y&x@x+y&x&y)| Applying C2→ C2 – C1 = 2(x+y) |■8(1&𝟏−𝟏&1@y&x+y−𝑦&x@x+y&x−x−y&y)| = 2(x+y) |■8(1&𝟎&1@y&x&x@x+y&−y&y)| Applying C3 →C3 – C1 = 2(x+y) |■8(1&0&𝟏−𝟏@y&x&x−y@x+y&−y&y−(x+y))| = 2(x+y) |■8(1&0&𝟎@y&x&x−y@x+y&−y&−x)| Expanding determinant along R1 = 2(x+y) (1|■8(𝑥&𝑥−𝑦@−𝑦&−𝑥)|−0|■8(𝑦&𝑥−𝑦@𝑥+𝑦&−𝑥)|+0|■8(𝑦&𝑥@𝑥+𝑦&−𝑦)|) = 2(x+y) (1|■8(𝑥&𝑥−𝑦@−𝑦&−𝑥)|−0+0) = 2(x+y) (1( – x2 – ( –y) (x – y)) ) = 2(x+y) ( – x2 + y (x – y)) = 2(x+y) ( – x2 + xy – y2) = – 2(x+y) ( x2 + y2 – xy) = − 2(x3+y3) Hence , ∆ = – 2(𝐱𝟑+𝐲𝟑)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.