ย  ย  Ex 4.4, 4 - Verify A (adj A) = (adj A) A =  AI - Class 12 CBSE - Ex 4.4

part 2 - Ex 4.4, 4 - Ex 4.4 - Serial order wise - Chapter 4 Class 12 Determinants
part 3 - Ex 4.4, 4 - Ex 4.4 - Serial order wise - Chapter 4 Class 12 Determinants
part 4 - Ex 4.4, 4 - Ex 4.4 - Serial order wise - Chapter 4 Class 12 Determinants
part 5 - Ex 4.4, 4 - Ex 4.4 - Serial order wise - Chapter 4 Class 12 Determinants part 6 - Ex 4.4, 4 - Ex 4.4 - Serial order wise - Chapter 4 Class 12 Determinants

Share on WhatsApp

Transcript

Ex 4.4, 4 Verify A (adj A) = (adj A) A = |๐ด|I for A = [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] Calculating |๐‘จ| |A| = |โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)| = 1 |โ– 8(0&โˆ’2@0&3)| โ€“ (โ€“1) |โ– 8(3&โˆ’2@1&3)| +2 |โ– 8(3&0@1&0)| = 1 (0 โ€“ 0) + 1 (9 + 2) +2 (0 โ€“ 0) = 11 Calculating adj A adj A = [โ– 8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] M11 = |โ– 8(0&โˆ’2@0&3)| = 0(3) โ€“ 0(โ€“2) = 0 M12 = |โ– 8(3&โˆ’2@1&3)| = 3(3) โ€“ 1(โ€“2) = 11 M13 = |โ– 8(3&0@1&0)| = 3(0) โ€“ 0(1) = 0 M21 = |โ– 8(โˆ’1&2@0&3)| = โˆ’1(3) โ€“ 0(2) = โˆ’3 M22 = |โ– 8(1&2@1&3)| = 1(3) โ€“ 1(2) = 1 M23 = |โ– 8(1&โˆ’1@1&0)| = 1(0) โ€“ 1(โˆ’1) = 1 M31 = |โ– 8("โˆ’" 1&2@0&"โˆ’" 2)| = -1(โ€“2) โ€“ 0(2) = 2 M32 = |โ– 8(1&2@3&โˆ’2)| = 1(โ€“2) โ€“ 3(2) = โ€“8 M33 = |โ– 8(1&โˆ’1@3&0)| = 1(0) โ€“ 3(โˆ’1) = 3 Now, A11 = (โ€“1)1 + 1 M11 = (โ€“1)2 0 = 0 A12 = (โ€“1)1+2 M12 = (โ€“1)3 (11) = โ€“11 A13 = (โ€“1)1+3 M13 = (โ€“1)4 0 = 0 A21 = (โ€“1)2+1 M21 = (โ€“1)3 (โˆ’3) = 3 A22 = (โ€“1)2+2 M22 = (โ€“1)4 . 1 = 1 A23 = (โ€“1)2+3 M23 = (โ€“1)5 (1) = โˆ’1 A31 = (โ€“1)3+1 M31 = (โ€“1)4 (2) = 2 A32 = (โ€“1)3+2 M32 = (โ€“1)5 (โ€“8) = 8 A33 = (โ€“1)3+3 M33 = (โ€“1)6 (3) = 3 Thus adj (A) = [โ– 8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] Calculating A (adj A) [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] = [โ– 8(1(0)โˆ’1(โคถ7โˆ’11)+2(0)&1(3)โˆ’1(1)+2(โˆ’1)&1(2)โˆ’1(8)+2(3)@3(0)+0(โคถ7โˆ’11)+(โˆ’2)(0)&3(3)+0(1)+(โˆ’2)(โˆ’1)&3(2)+0(8)+(โˆ’2)(3)@1(0)+0(โคถ7โˆ’11)+3(0)&1(3)+0(1)+3(โˆ’1)&1(2)+0(8)+3(3))] = [โ– 8(0+11+0&3โˆ’1โˆ’2&2โˆ’8+6@0โˆ’0โˆ’0&9+0+2&6+0โˆ’6@0โˆ’0+0&3+0โˆ’3&2+0+9)] = [โ– 8(11&0&0@0&11&0@0&0&11)] = 11 [โ– 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating (adj A)A [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] = [โ– 8(0(1)+3(3)+2(1)&0(โˆ’1)+3(0)+2(0)&0(2)+3(โˆ’2)+2(3)@โˆ’11(1)+1(3)+8(1)&โˆ’11(โˆ’1)+1(0)+8(0)&โˆ’11(2)+1(โˆ’2)+8(3)@0(1)+(โˆ’1)(3)+3(1)&0(โˆ’1)+(โˆ’1)(0)+3(0)&0(2)+(โˆ’1)(โˆ’2)+3(3))] = [โ– 8(0+9+2&โˆ’0+0+0&0โˆ’6+6@โˆ’11+3+8&11+0+0&โˆ’22โˆ’2+24@0โˆ’3+3&โˆ’0โˆ’0+0&โˆ’0+2+9)]a = [โ– 8(11&0&0@0&11&0@0&0&11)] = 11 [โ– 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating |A| I |A|I = 11I Thus, A (adj(A)) = (adj A) A = |A| I = 11I Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo