Misc 8 - Find matrix X so that X [1 2 3 4 5 6] - Miscellaneous - Miscellaneous

part 2 - Misc 8 - Miscellaneous - Serial order wise - Chapter 3 Class 12 Matrices
part 3 - Misc 8 - Miscellaneous - Serial order wise - Chapter 3 Class 12 Matrices
part 4 - Misc 8 - Miscellaneous - Serial order wise - Chapter 3 Class 12 Matrices
part 5 - Misc 8 - Miscellaneous - Serial order wise - Chapter 3 Class 12 Matrices part 6 - Misc 8 - Miscellaneous - Serial order wise - Chapter 3 Class 12 Matrices

Share on WhatsApp

Transcript

Misc 8 Find the matrix X so that X [■8(1&2&3@4&5&6)] =[■8(−7&−8&−9@2&4&6)] X [■8(1&2&3@4&5&6)] = [■8(−7&−8&−9@2&4&6)] X [■8(𝟏&𝟐&𝟑@𝟒&𝟓&𝟔)]_(𝟐 × 𝟑) = [■8(−𝟕&−𝟖&−𝟗@𝟐&𝟒&𝟔)]_(𝟐 × 𝟑) So X will be a × matrix Let X =[■8(𝑢&𝑤@𝑣&𝑥)]_(2 × 2) So, our equation becomes [■8(𝑢&𝑤@𝑣&𝑥)]_(2 × 2) [■8(1&2&3@4&5&6)]_(2 × 3) = [■8(−7&−8&−9@2&4&6)] [■8(𝑢(1)+𝑤(4)&𝑢(2)+𝑤(5)&𝑢(3)+𝑤(6)@𝑣(1)+𝑥(4)&𝑣(2)+𝑥(5)&𝑣(3)+𝑥(6))] = [■8(−7&−8&−9@2&4&6)] [■8(𝒖+𝟒𝒘&𝟐𝒖+𝟓𝒘&𝟑𝒖+𝟔𝒘@𝒗+𝟒𝒙&𝟐𝒗+𝟓𝒙&𝟑𝒗+𝟔𝒙)]_(𝟐×𝟑) = [■8(−𝟕&−𝟖&−𝟗@𝟐&𝟒&𝟔)]_(𝟐×𝟑) Since the matrices are equal Corresponding elements are equal u + 4w = - 7 2u + 5w = - 8 3u + 6w = - 9 v + 4x = 2 2v + 5x = 4 3v + 6x = 6 Solving (1) u + 4w = −7 u = −7 – 4w Putting value of u in (2) 2u + 5w = - 8 2(−7 – 4w) + 5w = - 8 −14 – 8w + 5w = - 8 −14 – 3w = - 8 −3w = - 8 + 14 −3w = 6 w = 6/(−3) w = –2 Now, u = – 7 – 4w Putting w = −2 u = – 7 – 4 (-2) u = – 7 + 8 u = 1 Solving (4) v + 4x = 2 v = 2 – 4x Putting value of v in (5) 2v + 5x = 4 2 (2 – 4x) + 5x = 4 4 – 8x + 5x = 4 4 – 3x = 4 −3x = 4 – 4 −3x = 0 x = 0 Putting value of x = 0 in (4) v + 4x = 2 v + 4(0) =2 v + 0 = 2 v = 2 Hence, u = 1 , v = 2 , w = − 2 & x = 0 Hence, matrix X = [■8(u&w@v&x)] = [■8(𝟏&−𝟐@𝟐&𝟎)]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo