web analytics

Misc 5 - Show that matrix B'AB is symmetric or skew symmetric - Proof using property of transpose

  1. Chapter 3 Class 12 Matrices
  2. Serial order wise
Ask Download

Transcript

Misc. 5 Show that the matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew symmetric. We need to prove B’AB is symmetric if A is symmetric and B’AB is skew symmetric if A is skew symmetric Proving B’AB is symmetric if A is symmetric Let A be a symmetric matrix, then A’ = A Taking (B’AB)’ Let AB = P = (B’P)’ = P’ (B’)’ = P’ B Putting P = AB = (AB)’ (B) = B’A’ (B) = B’AB ∴ (B’AB)’ = B’AB Thus, B’AB is a symmetric matrix Proving B’AB is skew-symmetric if A is skew-symmetric Let A be a skew-symmetric matrix, then A’ = – A Taking (B’AB)’ Let AB = P = (B’P)’ = P’ (B’)’ = P’ B Putting P = AB = (AB)’ (B) = B’A’ (B) = B’(–A)B = – B’AB ∴ (B’AB)’ = – B’AB Thus, B’AB is a skew symmetric matrix Hence, matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail