Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 3.4

Ex 3.4, 1 (MCQ)

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Deleted for CBSE Board 2024 Exams

Question 7 Deleted for CBSE Board 2024 Exams

Question 8 Important Deleted for CBSE Board 2024 Exams

Question 9 Deleted for CBSE Board 2024 Exams

Question 10 Deleted for CBSE Board 2024 Exams

Question 11 Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Deleted for CBSE Board 2024 Exams

Question 14 Deleted for CBSE Board 2024 Exams You are here

Question 15 Important Deleted for CBSE Board 2024 Exams

Question 16 Deleted for CBSE Board 2024 Exams

Question 17 Important Deleted for CBSE Board 2024 Exams

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at May 29, 2023 by Teachoo

Ex 3.4, 14 Find the inverse of each of the matrices, if it exists.[■8(2&1@4&2)] Let A = [■8(2&1@4&2)] We know that A = IA [■8(2&1@4&2)] = [■8(1&0@0&1)] A R1 →"R1"−1/2 R2 [■8(𝟐−𝟏/𝟐(𝟒)&1−1/2(2)@4&2)] = [■8(1&0@0&1)] A [■8(0&0@4&2)] = [■8(1&−1/2@0&1)] A Since we have all zeros in the first row of the left hand side matrix of the above equation. Therefore, A−1 does not exist.