Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video

Last updated at May 29, 2018 by Teachoo
Transcript
Ex3.4, 2 Find the inverse of each of the matrices, if it exists.[ 8(2&1@1&1)] Let A = [ 8(2&1@1&1)] We know that A = IA [ 8(2&1@1&1)] = [ 8(1&0@0&1)] A R1 R1 R2 [ 8( &1 1@1&1)] = [ 8(1 0&0 1@0&1)] A [ 8( &0@1&1)] = [ 8(1& 1@0&1)] A R2 R2 R1 [ 8(1&0@ &1 0)] = [ 8(1& 1@0 1&1 ( 1))] A [ 8(1&0@ &1)] = [ 8(1& 1@ 1&2)] A I = [ 8(1& 1@ 1&2)] A This is similar to I = A-1A Thus, A-1 = [ 8(1& 1@ 1" " &2" " )]
Ex 3.4
Ex 3.4, 2 Not in Syllabus - CBSE Exams 2021 You are here
Ex 3.4, 3 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 4 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 5 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 6 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 7 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 8 Important Not in Syllabus - CBSE Exams 2021
Ex 3.4, 9 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 10 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 11 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 12 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 13 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 14 Not in Syllabus - CBSE Exams 2021
Ex 3.4, 15 Important Not in Syllabus - CBSE Exams 2021
Ex 3.4, 16 Important Not in Syllabus - CBSE Exams 2021
Ex 3.4, 17 Important Not in Syllabus - CBSE Exams 2021
Ex 3.4, 18 Not in Syllabus - CBSE Exams 2021
About the Author