
Last updated at May 29, 2018 by Teachoo
Transcript
Ex3.4, 2 Find the inverse of each of the matrices, if it exists.[ 8(2&1@1&1)] Let A = [ 8(2&1@1&1)] We know that A = IA [ 8(2&1@1&1)] = [ 8(1&0@0&1)] A R1 R1 R2 [ 8( &1 1@1&1)] = [ 8(1 0&0 1@0&1)] A [ 8( &0@1&1)] = [ 8(1& 1@0&1)] A R2 R2 R1 [ 8(1&0@ &1 0)] = [ 8(1& 1@0 1&1 ( 1))] A [ 8(1&0@ &1)] = [ 8(1& 1@ 1&2)] A I = [ 8(1& 1@ 1&2)] A This is similar to I = A-1A Thus, A-1 = [ 8(1& 1@ 1" " &2" " )]
Inverse of matrix using elementary transformation
Inverse of a matrix
Finding inverse of a matrix using Elementary Operations
Ex 3.4, 18
Example 23
Example 25
Ex 3.4, 1
Ex 3.4, 2 You are here
Ex 3.4, 3
Ex 3.4, 4
Ex 3.4, 5
Ex 3.4, 6
Ex 3.4, 7
Ex 3.4, 8
Ex 3.4, 9
Ex 3.4, 10
Ex 3.4, 11
Ex 3.4, 12
Ex 3.4, 13
Ex 3.4, 14
Example 24
Ex 3.4, 15 Important
Ex 3.4, 16
Ex 3.4, 17 Important
About the Author