Slide33.JPG

Slide34.JPG
Slide35.JPG

Go Ad-free

Transcript

Ex 3.4, 1 Find the inverse of each of the matrices, if it exists. [■8(1&−1@2&3)] Let A = [■8(1&−1@2&3)] We know that A = IA [■8(1&−1@2&3)] = [■8(1&0@0&1)] A R2 → R2 – 2R1 [■8(1&−1@𝟐−𝟐(𝟏)&3−2(−1))] = [■8(1&0@0−2(1)&1−2(0))] A [■8(1&−1@𝟎&5)] = [■8(1&0@−2&1)] A R2 →1/5 R2 [■8(1&−1@0/5&𝟓/𝟓)] = [■8(1&0@(−2)/5&1/5)] A [■8(1&−1@0&𝟏)] = [■8(1&0@(−2)/5 " " &1/5 " " )] A R1 →R1 + R2 [■8(1+0&−𝟏+𝟏@0&1)] = [■8(1−2/5&0+1/5@(−2)/5 " " &1/5 " " )] A [■8(1&𝟎@0&1)] = [■8(3/5&1/5@(−2)/5 " " &1/5 " " )] A I = [■8(3/5&1/5@(−2)/5 " " &1/5 " " )] A This is similar to I = A-1A Thus, A-1 = [■8(𝟑/𝟓&𝟏/𝟓@(−𝟐)/𝟓 " " &𝟏/𝟓 " " )]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.