Check sibling questions

Slide24.JPG

This video is only available for Teachoo black users

Slide25.JPG

This video is only available for Teachoo black users

Slide26.JPG

Slide27.JPG

This video is only available for Teachoo black users

Slide28.JPG

This video is only available for Teachoo black users

Slide29.JPG

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month


Transcript

Ex 3.2, 1 Let A = [■8(2&4@3&2)], B = [■8(1&3@−2&5)], C = [■8(−2&5@3&4)] Find each of the following (i) A + B A + B = [■8(2&4@3&2)] + [■8( 1&3@−2&5)] = [■8(2+1&4+3@3−2&2+5)] = [■8(𝟑&𝟕@𝟏&𝟕)] Ex 3.2,1 Let A = [■8(2&4@3&2)], B = [■8(1&3@−2&5)], C = [■8(−2&5@3&4)] Find each of the following (ii) A – B A – B = [■8(2&4@3&2)]− [■8( 1&3@−2&5)] = [■8(2−1&4−3@3−(−2)&2−5)] = [■8(1&1@3+2&−3)] = [■8(𝟏&𝟏@𝟓&−𝟑)] Ex 3.2, 1 Let A = [■8(2&4@3&2)], B = [■8(1&3@−2&5)], C = [■8(−2&5@3&4)] Find each of the following 3A – C Finding 3A 3A = 3[■8(2&4@3&2)] = [■8(3 × 2&3 × 4@3 × 3 &3 × 2)] = [■8(𝟔&𝟏𝟐@𝟗&𝟔)] Hence 3A – C = [■8(6&12@9&6)] ⤶7− [■8(−2&5@3&4)] = [■8(6−(−2)&12−5@9−3&6−4)] = [■8(6+2&7@6&2)] = [■8(𝟖&𝟕@𝟔&𝟐)] Ex 3.2, 1 Let A = [■8(2&4@3&2)] B = [■8(1&3@−2&5)] , C = [■8(−2&5@3&4)]. Find each of the following (iv)AB AB = [■8(2&4@3&2)] [■8(1&3@−2&5)] = [■8(2 × 1+4 × −2 &2 × 3+4 × 5@3 × 1+2 × −2&3 × 3+2 × 5)] = [■8(2−8&6+20@3−4&9+10)] = [■8(−𝟔&𝟐𝟔@−𝟏&𝟏𝟗)] Ex 3.2, 1 Let A = [■8(2&4@3&2)] B = [■8(1&3@−2&5)] , C = [■8(−2&5@3&4)]. Find each of the following (v) BA BA = [■8(1&3@−2&5)] [■8(2&4@3&2)] = [■8(1 × 2+3 × 3 &1 × 4+3 × 2@−2 × 2+5 × 3&−2 × 4+5 × 2)] = [■8(2+9&4+6@−4+15&−8+10)] = [■8(𝟏𝟏&𝟏𝟎@𝟏𝟏&𝟐)]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.