Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 17, 2020 by Teachoo

Transcript

Example 19 Using the words necessary and sufficient rewrite the statement The integer n is odd if and only if n2 is odd . Also check whether the statement is true. The necessary and sufficient condition that the integer n be odd is n2 must be odd. Let p and q denote the statements p : the integer n is odd. q : n2 is odd. Now checking whether statement be true Care l :- Direct method If p then q i.e. p q It integer n is odd. Then prove that n2 is odd let n = 2k + 1 k Z squaring both side. n2 = (2k + 1 ) n2 = (2k)2 + (1)2 + 2k + 1 = 4k2 + 1 + 4k = 4k2 + 4k + 1 = 4 ( k2 + 1 ) + 1 n2 is odd Hence p = q Case 2 :- Contraption If n2 is odd to prove n is odd we check this by Contrapositive method let n is not odd prove that n2 is not odd i.e. prove that n2 is even i.e. prove that n2 is even Now let n is not odd i.e. n is even i.e. n = 2k Squaring both side n2 = (2k)2 n2 = 4k2 This show n2 is even Hence n2 is not odd

Examples

Example 1
Important
Not in Syllabus - CBSE Exams 2021

Example 2 Not in Syllabus - CBSE Exams 2021

Example 3 Not in Syllabus - CBSE Exams 2021

Example 4 Not in Syllabus - CBSE Exams 2021

Example 5 Important Not in Syllabus - CBSE Exams 2021

Example 6 Not in Syllabus - CBSE Exams 2021

Example 7 Important Not in Syllabus - CBSE Exams 2021

Example, 8 Important Not in Syllabus - CBSE Exams 2021

Example 9 Not in Syllabus - CBSE Exams 2021

Example 10 Not in Syllabus - CBSE Exams 2021

Example 11 Not in Syllabus - CBSE Exams 2021

Example 12 Not in Syllabus - CBSE Exams 2021

Example 13 Important Not in Syllabus - CBSE Exams 2021

Example 14 Important Not in Syllabus - CBSE Exams 2021

Example 15 Not in Syllabus - CBSE Exams 2021

Example 16 Not in Syllabus - CBSE Exams 2021

Example 17 Not in Syllabus - CBSE Exams 2021

Example 18 Important Not in Syllabus - CBSE Exams 2021

Example 19 Important Not in Syllabus - CBSE Exams 2021 You are here

Example 20 Important Not in Syllabus - CBSE Exams 2021

Chapter 14 Class 11 Mathematical Reasoning

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.