Solve all your doubts with Teachoo Black (new monthly pack available now!)
Are you in school? Do you love Teachoo?
We would love to talk to you! Please fill this form so that we can contact you
Examples
Last updated at Jan. 31, 2020 by Teachoo
Example 12 Find the equation of the set of the points P such that its distances from the points A (3, 4, –5) and B (– 2, 1, 4) are equal. Given A (3, 4, −5) & B ( –2, 1, 4) Let point P be (x, y, z,) Given PA = PB Calculating PA PA = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = 3, y2 = 4, z2 = −5 PA = √((3−𝑥)2+(4−𝑦)2+(−5−𝑧)2) = √((3−𝑥)2+(4−𝑦)2+(5+𝑧)2) = √((3)2+(𝑥)2−2(3)(𝑥)+(4)2+𝑦2−2(4)(𝑦)+(5)2+(𝑧)2+2(5)(𝑧) ) = √(9+𝑥2−6𝑥+16+𝑦2−8𝑦+25+𝑧2+10𝑧) = √(𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+9+16+25) = √(𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+50) Calculating PB P (x, y, z) B (–2, 1, 4) PB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = –2, y2 = 1, z2 = 4 PB = √((−2−𝑥)2+(1−𝑦)2+(4−𝑧)2) = √((2+𝑥)2+(1−𝑦)2+(4−𝑧)2) = √((2)2+(𝑥)2+2(2)(𝑥)+(1)2+𝑦2−2(1)(𝑦)+42+𝑧2−2(4)(𝑧) ) = √(4+𝑥2+4𝑥+1+𝑦2−2𝑦+16+𝑧2−8𝑧) = √(𝑥2+𝑦2+𝑧2+4𝑥−2𝑦−8𝑧+21) Now, given that PA = PB √(𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+40) = √(𝑥2+𝑦2+𝑧2+4𝑥−2𝑦+8𝑧+21) Squaring both sides (√(𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+40))2 = (√(𝑥2+𝑦2+𝑧2+4𝑥−2𝑦+8𝑧+21))2 𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+40 = 𝑥2+𝑦2+𝑧2+4𝑥−2𝑦+8𝑧+21 𝑥2+𝑦2+𝑧2−6𝑥−8𝑦+10𝑧+40 – 𝑥2−𝑦2−𝑧2+4𝑥+2𝑦+8𝑧−21=0 𝑥2−𝑥2+𝑦2+𝑦2+𝑧2−𝑧2−6𝑥−4𝑥+8𝑦+2y+10z+8z+40−21=0 0 + 0 + 0 – 10x – 6y + 18z + 29 = 0 –10x – 6y + 18z + 29 = 0 0 = 10x + 6y – 18z – 29 = 0 10x + 6y – 18z – 29 = 0 which is the required equation