Slide45.JPG

Slide46.JPG
Slide47.JPG
Slide48.JPG


Transcript

Ex 10.4, 14 Find the equation of the hyperbola satisfying the given conditions: Vertices (±7, 0), e = 4/3 Here, the vertices are on the x-axis. Therefore, the equation of the hyperbola is of the form 𝒙𝟐/𝒂𝟐 – 𝒚𝟐/𝒃𝟐 = 1 Now, coor#dinates of vertices are (± a,0) & Given vertices = (±7, 0), So, (± a,0) = (±7, 0), a = 7 We know that Eccentricity = e = 𝑐/𝑎 Given that e = 4/3 4/3 = 𝑐/𝑎 4a = 3c Putting a = 7 4 × 7=3 𝑐 28 = 3 c 3c = 28 c = 𝟐𝟖/𝟑 Also, we know that c2 = a2 + b2 Putting values (28/3)^2 = 49 + b2 784/9 = 49 + b2 b2 = (784 −441)/9 b2 = 𝟑𝟒𝟑/𝟗 Required equation of hyperbola 𝑥2/𝑎2− 𝑦2/𝑏2 =1 Putting values 𝑥2/7^2 − 𝑦2/(343/9) =1 𝒙𝟐/𝟒𝟗 − 𝟗𝒚𝟐/𝟑𝟒𝟑 = 1

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.