Slide30.JPG

Slide31.JPG
Slide32.JPG
Slide33.JPG


Transcript

Ex 8.2, 8 Find the sum to n terms in the geometric progression 7 , 21 ,3 7 7 , 21 ,3 7 Here, First term a = 7 Common ratio r = 21/ 7 = (7 3)/ 7 = ( 7 3 )/ 7 = 3 So r = 3 1.73 Since, r > 1 Sn = ( ( ^ 1))/( 1) Sn = ( ( ^ 1))/( 1) where Sn = sum of n terms of GP n is the number of terms a is the first term r is the common ratio Now, Sum of n terms = ( ( ^ 1))/( 1) Putting values a = 7 , r = 3 Sn = ( 7 (( 3)^ 1))/( 3 1) Rationalizing the same = ( 7 (( 3)n 1 )])/( 3 1) x ( 3 + 1)/( 3 + 1) = ( 7 ( 3 1) ( 3+ 1))/(( 3 1) ( 3+ 1)) = ( 7 ( 3 1) ( 3+ 1))/(( 3 1) ( 3+ 1)) Using a2 b2 = (a + b)(a b) = ( 7 (3^(1/2 ) 1)( 3 +1))/(( 3)2 1^2 ) =( 7 (3^( /2) 1) ( 3 + 1))/2 = 7/2( 3+1) (3^( /2) 1) Hence sum of n term is 7/2( 3+1) (3^( /2) 1)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.