Arithmetic Progression
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 Important
Question 15 Important
Question 16 Important You are here
Question 17
Question 18 Important
Arithmetic Progression
Last updated at April 16, 2024 by Teachoo
Question16 Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m โ 1)th numbers is 5 : 9. Find the value of m. We know that to insert n numbers between a & b common difference (d) = (๐ โ ๐)/(๐ + 1) Here, We have to insert m numbers between 1 and 31 So , b = 31 , a = 1 & number of terms to be inserted = n = m Therefore, d = (31 โ 1)/(๐ + 1) = 30/(๐ + 1 ) Now, a = 1 , d = 30/(๐ + 1 ), b = 31 We need to find 7th and (m โ 1)th numbers inserted Now it is given that ratio of (7^๐กโ ๐๐ข๐๐๐๐)/((๐ โ 1)^๐กโ ๐๐ข๐๐๐๐) = 5/9 (1 + 7๐)/(1 + (๐ โ 1)๐) = 5/9 (1 + 7๐)/(1 + (๐ โ 1)๐) = 5/9 (1 + 7d)9 = 5[1 + (m โ 1)d] 9 + 63d = 5 + 5d(m โ 1) 9 + 63d = 5 + 5dm โ 5d 9 โ 5 + 63d + 5d = 5dm 4 + 63d = 5dm Putting d = 30/(๐ + 1) 4 + 63(30/(๐ + 1)) = 5(30/(๐ + 1))m (4(๐ + 1) + 63 ร 30)/(๐ + 1 ) = (5 ร 30 ร ๐)/(๐ + 1) 4(m + 1) + 2040 = 150m 4m + 4 + 2040 = 150m 2044 = 150m โ 4m 2044 = 150m โ 4m 2044 = 146m m = 2044/146 m = 14 Hence m = 14