

Ex 9.2
Ex 9.2, 2
Ex 9.2, 3 Important
Ex 9.2, 4 You are here
Ex 9.2, 5 Important
Ex 9.2, 6
Ex 9.2, 7 Important
Ex 9.2, 8
Ex 9.2, 9 Important
Ex 9.2, 10
Ex 9.2, 11 Important
Ex 9.2, 12
Ex 9.2, 13
Ex 9.2, 14 Important
Ex 9.2, 15 Important
Ex 9.2, 16 Important
Ex 9.2, 17
Ex 9.2, 18 Important
Ex 9.2
Last updated at May 29, 2018 by Teachoo
Ex 9.2,4 How many terms of the A.P. 6, 11/2, 5 . are needed to give the sum 25? AP is of the form 6, 11/2, 5 . Here First term = a = 6 Common difference = d = 11/2 ( 6) = 11/2 + 6 = ( 11 + 12 )/2 = 1/2 & Sum of n terms = Sn = 25 We need to find n We know that Sn = n/2 [2a + (n 1)d] Here, Sn = 25 , a = 6 , d =1/2 Putting values 25 = n/2 ["2( 6) + (n 1)" (1/2)] 25 2 = n [" 12 + " n/2 " " 1/2] 50 = n [n/2 " 12 " 1/2] 50 = n [n/2 " " ((12(2) + 1)/2)] 50 = n [n/2 " " ((24 + 1)/2)] 50 = n [n/2 25/2] 50 = n [(n 25)/2] 50 2 = n(n 25) 100 = n2 25n 0 = n2 25n + 100 n2 25n + 100 = 0 n2 20n 5n + 100 = 0 n (n 20) 5 (n 20) = 0 (n 5)(n 20) = 0 Thus, n 5 = 0 , n 20 = 0 So, n = 5 , n = 20 Hence, n = 5 , 20 both values gives the required sum.