Ex 9.2, 9 - Chapter 9 Class 11 Sequences and Series (Term 1)
Last updated at May 29, 2018 by Teachoo
Last updated at May 29, 2018 by Teachoo
Transcript
Ex 9.2 , 9 The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms. There are two AP with different first term and common difference For the first AP Let first term be = a Common difference = d Sum of n terms = Sn = /2 [2a + (n 1)d] & nth term = an = a + (n 1)d For the second AP Let first term be = A common difference = D Sum of n terms = Sn = /2 [2A + (n 1)D] & nth term = An = A + (n 1)D We need to find ratio of their 18th term i.e. (18 1 )/(18 2 ) = ( 18 1 )/( 18 2 ) = (a + (18 1)d)/(A + (18 1)D) = ( + 17 )/(A + 17D) is given that (Sum of n terms of first A )/(Sum of n terms of second A ) = (5n+4)/(9n+6) ( /2[2 +( 1) ])/(( )/2[2 +( 1) ]) = (5n+4)/(9n+6) ( [2 +( 1) ])/( [2 +( 1) ]) = (5n+4)/(9n+6) ( 2(a +(( 1)/2)d))/( 2(A +(( 1)/2)D) ) = (5n+4)/(9n+6) ( (a +(( 1)/2)d))/( (A +(( 1)/2)D) ) = (5n+4)/(9n+6) We have to find ( + 17 )/(A + 17D) Hence, ( 1)/2 = 17 n 1 = 17 2 n 1 = 34 n = 34 + 1 n = 35 Putting n = 35 in (1) ( (a +((35 1)/2)d))/( (A +((35 1)/2)D) ) " "= (5(35)+4)/(9(35)+6) ( (a +(34/2)d))/( (A +(34/2)D) )= (175 + 4)/(315 + 6) ([a + 17d])/( [A + 17D]) = 179/321 Therefore (18 1 )/(18 2 ) = 179/321 Hence the ratio of 18th term of 1st AP and 18th term of 2nd AP is 179 : 321
Ex 9.2
Ex 9.2, 2
Ex 9.2, 3 Important
Ex 9.2, 4
Ex 9.2, 5 Important
Ex 9.2, 6
Ex 9.2, 7 Important
Ex 9.2, 8
Ex 9.2, 9 Important You are here
Ex 9.2, 10
Ex 9.2, 11 Important
Ex 9.2, 12
Ex 9.2, 13
Ex 9.2, 14 Important
Ex 9.2, 15 Important
Ex 9.2, 16 Important
Ex 9.2, 17
Ex 9.2, 18 Important
Ex 9.2
About the Author