# Question 10 - Examples - Chapter 7 Class 11 Binomial Theorem

Last updated at April 16, 2024 by Teachoo

Examples

Example 1

Example 2 Important

Example 3 Important

Example 4

Question 1 Important Deleted for CBSE Board 2025 Exams

Question 2 Important Deleted for CBSE Board 2025 Exams

Question 3 Deleted for CBSE Board 2025 Exams

Question 4 Important Deleted for CBSE Board 2025 Exams

Question 5 Deleted for CBSE Board 2025 Exams

Question 6 Important Deleted for CBSE Board 2025 Exams

Question 7 Important Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Important Deleted for CBSE Board 2025 Exams

Question 10 Important Deleted for CBSE Board 2025 Exams You are here

Question 11 Important Deleted for CBSE Board 2025 Exams

Question 12 Deleted for CBSE Board 2025 Exams

Question 13 Important Deleted for CBSE Board 2025 Exams

Chapter 7 Class 11 Binomial Theorem

Serial order wise

Last updated at April 16, 2024 by Teachoo

Example 14 Find the rth term from the end in the expansion of (x + a)n. We know that (a + b)n = nCo anbo + nC1 an–1b1 +……..+ nCn–1 (a)(n–1) .bn–1 + nCn a0 bn = an + nC1 an–1b1 + ………………………+ nC1 a1bn–1 + bn = bn + nC1 a1 bn–1 +…………………+ nC1 an–1 b1 + an rth term from end = rth term of A.P n + 1, n , n – 1 ……… from starting We know that nth term of A.P = A + (n – 1)D Here, First Term = A = n + 1 Common difference = D = n – (n + 1) = n – n – 1 = –1 rth term from end = A + (r – 1)D = (n + 1) + (r – 1) (–1) = (n – r + 2)th term from stating We know that General term of expansion (a + b)n Tr + 1 = nCr (a)n-r.br Putting r = (n – r + 2) – 1 = n – r + 1 And, a = x & b = a T(n – r + 1) + 1 = nCn – r + 1 .(x)n – [n – r + 1] . an – r + 1 = nCn – r + 1 .(x)n- n – r + 1 . an – r + 1 = nCn – r + 1 . xr – 1 . an – r + 1 Hence rth term from end is nCn – r + 1 xr – 1 an – r + 1