# Example 11 - Chapter 8 Class 11 Binomial Theorem

Last updated at Jan. 29, 2020 by Teachoo

Examples

Example 1

Example 2 Important

Example 3 Important

Example 4

Example 5 Important Deleted for CBSE Board 2023 Exams

Example 6 Important Deleted for CBSE Board 2023 Exams

Example 7 Deleted for CBSE Board 2023 Exams

Example 8 Important Deleted for CBSE Board 2023 Exams

Example 9 Deleted for CBSE Board 2023 Exams

Example 10 Important Deleted for CBSE Board 2023 Exams

Example 11 Important Deleted for CBSE Board 2023 Exams You are here

Example 12 Deleted for CBSE Board 2023 Exams

Example 13 Important Deleted for CBSE Board 2023 Exams

Example 14 Important Deleted for CBSE Board 2023 Exams

Example 15 Important Deleted for CBSE Board 2023 Exams

Example 16 Deleted for CBSE Board 2023 Exams

Example 17 Important Deleted for CBSE Board 2023 Exams

Last updated at Jan. 29, 2020 by Teachoo

Example 11 If the coefficients of ar – 1, ar and ar + 1 in the expansion of (1 + a)n are in arithmetic progression, prove that n2 – n(4r + 1) + 4r2 – 2 = 0. We know that General term of (a + b)n Tr+1 = nCr an–r . br For (1 + a)n Putting a = 1 & b = a Tr + 1 = nCr (1)n – r . ar Tr + 1 = nCr ar Hence, Coefficient of ar = nCr Finding coefficient of ar – 1 Putting r = r – 1 in (1) T(r – 1) + 1 = nCr – 1 ar – 1 Tr = nCr – 1 ar – 1 ∴ Coefficient of ar – 1 = nCr – 1 For coefficient of ar + 1 Putting r = r + 1 in (1) T(r+1) + 1 = nCr + 1 ar + 1 Tr + 2 = nCr+1 ar + 1 ∴ Coefficient of ar + 1 = nCr + 1 Given that coefficient of ar–1 , ar , ar+1 are in AP i.e. nCr–1 , nCr , & nCr + 1 are in AP Therefore, common difference must be equal nCr – nCr – 1 = nCr+1 – nCr nCr + nCr = nCr+1 + nCr–1 2nCr = nCr+1 + nCr–1 nCr–1 + nCr+1 = 2nCr 𝑛!/(𝑟 − 1)![ 𝑛 − (𝑟 − 1)]! + 𝑛!/((𝑟 + 1)! (𝑛 − (𝑟 + 1))!) = 2 × 𝑛!/𝑟!(𝑛 − 𝑟)! n! (1/(𝑟−1)!(𝑛−𝑟+1)! " + " 1/((𝑟+1)!(𝑛−𝑟 −1)!)) = n! (2/𝑟!(𝑛 − 𝑟)!) 𝑛!/𝑛! (1/(𝑟−1)!(𝑛−𝑟+1)! " + " 1/((𝑟+1)!(𝑛−𝑟 −1)!)) = (2/𝑟!(𝑛−𝑟)!) 1/((r − 1)! (n − r + 1)(n − r)(n − r − 1)!) + 1/((r + 1)(r)(r − 1)! (n − r − 1)!) = 2/(r(r − 1)! (n − r)(n − r − 1)!) 1/(𝑟 − 1)!(𝑛 − 𝑟 − 1)! (1/((𝑛 − 𝑟 + 1)(𝑛 − 𝑟) ) "+" 1/((𝑟 + 1)(𝑟) )) = 2/((r − 1)! (n − r − 1) ! [𝑟(n − r)]) (𝑟−1)!(𝑛−𝑟+1)!/(𝑟−1)!(𝑛−𝑟+1)! (1/((𝑛 − 𝑟 + 1)(𝑛 − 𝑟) ) "+" 1/((𝑟 + 1)(𝑟) )) = 2/𝑟(n − r) 1/((𝑛 − 𝑟) (𝑛 − 𝑟 − 1) ) + 1/((𝑟 + 1) 𝑟) = 2/(𝑟 (𝑛 − 𝑟) ) ((𝑟 + 1)𝑟 + (𝑛 − 𝑟)(𝑛 − 𝑟 + 1))/( (𝑛 − 𝑟)(𝑛 − 𝑟 + 1) (𝑟 + 1)𝑟) = 2/( 𝑟(𝑛 − 𝑟) ) (r + 1) r + (n – r) (n – r + 1) = (2(n − r)(n − r + 1)(r + 1)(𝑟))/( 𝑟(n − r) ) (r + 1) r + (n – r) (n – r + 1)= 2(n – r + 1) (r + 1) r2 + r + n (n – r + 1) – r (n – r + 1) = 2 [r (n – r + 1) + 1(n – r + 1 )] r2 + r + n2 – nr + n – nr + r2 – r = 2(rn – r2 + r + n – r + 1) r2 + r2 + r – r + n2 – nr – nr + n = 2rn – 2r2 + 2r + 2n – 2r + 2 2r2 + 0 + n2 – 2nr + n = – 2r2 + 2r – 2r + 2rn + 2n + 2 2r2 + n2 – 2nr + n = – 2r2 + 2rn + 2n + 2 2r2 + n2 – 2nr + n + 2r2 – 2rn – 2n – 2 = 0 2r2 + 2r2 + n2 – 2nr – 2rn + n – 2n – 2 = 0 4r2 + n2 – 4nr – n – 2 = 0 n2 – 4nr – n + 4r2 – 2 = 0 n2 – n (4r + 1) + 4r2 – 2 = 0 Hence proved