# Question 6 - Examples - Chapter 7 Class 11 Binomial Theorem

Last updated at April 16, 2024 by Teachoo

Examples

Example 1

Example 2 Important

Example 3 Important

Example 4

Question 1 Important Deleted for CBSE Board 2024 Exams

Question 2 Important Deleted for CBSE Board 2024 Exams

Question 3 Deleted for CBSE Board 2024 Exams

Question 4 Important Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams You are here

Question 7 Important Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams

Question 9 Important Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Question 11 Important Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Important Deleted for CBSE Board 2024 Exams

Chapter 7 Class 11 Binomial Theorem

Serial order wise

Last updated at April 16, 2024 by Teachoo

Question 6 Find the term independent of x in the expansion of (3/2 š„^2 " ā " 1/3š„)^6,x > 0. Calculating general term We know that general term of expansion (a + b)n is Tr + 1 = nCr (a)nār.(b)n For general term of expansion (3/2 š„^2 " ā " 1/3š„)^6 Putting n = 6 , a = 3/2 š„^2 , b = "ā" 1/3š„ Tr + 1 = 6Cr (š/š š^š )^(š ā š) ((āš)/šš)^š = 6Cr (3/2)^(6 ā š) (š„^2 ")" ^((6 ā š)) ((ā1)/3 "Ć" 1/š„)^š = 6Cr (3/2)^(6 ā š) (š„")" ^(2(6 ā š)) ((ā1)/3)^š (1/š„)^š = 6Cr (3/2)^(6 ā š) (š„")" ^(12 ā 2š) ((ā1)/3)^š (š„)^(āš) = 6Cr (3/2)^(6 ā š) ((ā1)/3)^š (š„")" ^(12 ā 2š) (š„)^(āš) = 6Cr (3/2)^(6 ā š) ((ā1)/3)^š (š„")" ^(12 ā 2š ā š) = 6Cr (3/2)^(6 ā š) ((ā1)/3)^š (š„")" ^(12 ā3š) We need to find the term independent of x So, power of x is 0 š„^(12 ā 3š) = x0 Comparing powers 12 ā 3r = 0 12 = 3r 12/3 = r 4 = r r = 4 Putting r = 4 in (1) T4+1 = 6C4 (3/2)^(6 ā 4) ((ā1)/3)^4 (š„")" ^(12 ā3(4)) T5 = 6C4 (3/2)^2 (1/3^4 ) (š„")" ^(12 ā12) = 6C4 (3^2/2^2 )(1/3^4 ) (š„")" ^0 = 6C4 (1/2^2 )(3^2/3^4 ) (1) = 6C4 (1/2^2 )(1/3^2 ) = 6!/4!(6 ā 4)! (1/4)(1/9) = 6!/4!(2)! (1/4)(1/9) = (6(5)(4)!)/4!(2)! (1/4)(1/9) = (5 )/12 Hence, the term which is independent of x is 5th term = T5 = š/šš