Example 9 - Chapter 8 Class 11 Binomial Theorem (Deleted)
Last updated at Jan. 29, 2020 by Teachoo
Examples
Example 2 Important Deleted for CBSE Board 2022 Exams
Example 3 Important Deleted for CBSE Board 2022 Exams
Example 4 Deleted for CBSE Board 2022 Exams
Example 5 Important Deleted for CBSE Board 2022 Exams
Example 6 Important Deleted for CBSE Board 2022 Exams
Example 7 Deleted for CBSE Board 2022 Exams
Example 8 Important Deleted for CBSE Board 2022 Exams
Example 9 Deleted for CBSE Board 2022 Exams You are here
Example 10 Important Deleted for CBSE Board 2022 Exams
Example 11 Important Deleted for CBSE Board 2022 Exams
Example 12 Deleted for CBSE Board 2022 Exams
Example 13 Important Deleted for CBSE Board 2022 Exams
Example 14 Important Deleted for CBSE Board 2022 Exams
Example 15 Important Deleted for CBSE Board 2022 Exams
Example 16 Deleted for CBSE Board 2022 Exams
Example 17 Important Deleted for CBSE Board 2022 Exams
Examples
Example 9 The coefficients of three consecutive terms in the expansion of (1 + a)n are in the ratio 1: 7 : 42. Find n. Let the three consecutive terms be (r – 1)th, rth and (r + 1)th terms. i.e. Tr – 1 , Tr & Tr + 1 We know that general term of expansion (a + b)n is Tr + 1 = nCr an – r br For (1 + a)n , Putting a = 1 , b = a Tr+1 = nCr 1n – r ar Tr+1 = nCr ar ∴ Coefficient of (r + 1)th term = nCr For rth term of (1 + a)n Replacing r with r – 1 in (1) Tr – 1 + 1 = nCr – 1 ar – 1 Tr = nCr – 1 ar – 1 ∴ Coefficient of (r)th term = nCr – 1 For (r – 1)th term of (1 + a)n Replacing r with r – 2 in (1) Tr – 2 + 1 = nCr – 2 ar – 2 Tr – 1 = nCr – 2 ar – 2 ∴ Coefficient of (r – 1)th term = nCr – 2 Since the coefficient of (r – 1)th, rth and (r + 1)th terms are in ratio 1 : 7 : 42 (𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒐𝒇 〖(𝒓 − 𝟏)〗^𝒕𝒉 𝒕𝒆𝒓𝒎)/(𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒐𝒇 𝒓^𝒕𝒉 𝒕𝒆𝒓𝒎) = 𝟏/𝟕 〖𝑛𝐶〗_(𝑟 − 2)/〖𝑛𝐶〗_(𝑟 − 1) = 1/7 (𝑛!/((𝑟 − 2)![𝑛 − (𝑟 − 2)]!))/(𝑛!/(𝑟 − 1)!(𝑛 − (𝑟 − 1))!) = 1/7 𝑛!/((𝑟 − 2)![𝑛 − (𝑟 − 2)]!) × ((𝑟 − 1)![𝑛 − (𝑟 − 1)]!)/𝑛! = 1/7 (𝑟 − 1)(𝑟 − 2)!(𝑛 − (𝑟 − 1))!/((𝑟 − 2)! (𝑛 − (𝑟 − 2))!) = 1/7 (𝑟 − 1)(𝑛 − 𝑟 + 1)!/((𝑛 − 𝑟 + 2)!) = 1/7 (𝑟 − 1)(𝑛− 𝑟 + 1)!/((𝑛 − 𝑟 + 2)(𝑛 − 𝑟 + 2 −1)!) = 1/7 (𝑟 − 1)(𝑛− 𝑟 + 1)!/((𝑛 − 𝑟 + 2)(𝑛 − 𝑟 + 1)!) = 1/7 ((𝑟 − 1))/((𝑛 − 𝑟 + 2) ) = 1/7 7(r – 1) = n – r + 2 n – 8r + 9 = 0 Also (𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒐𝒇 𝒓^𝒕𝒉 𝒕𝒆𝒓𝒎)/(𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒐𝒇 〖(𝒓 + 𝟏)〗^𝒕𝒉 𝒕𝒆𝒓𝒎) = 𝟕/𝟒𝟐 (𝑛!/((𝑟 − 1)![𝑛 − (𝑟 − 1)]!))/(𝑛!/(𝑟! (𝑛 − 𝑟)!)) = 7/42 𝑛!/((𝑟 − 1)!(𝑛 − 𝑟 + 1)!) × (𝑟! (𝑛 − 𝑟)! )/𝑛! = 1/6 (𝑛! × 𝑟 × (𝑟 − 1)!(𝑛 − 𝑟)!)/(𝑛!(𝑟 − 1)! (𝑛 − 𝑟 + 1)!) = 1/6 𝑟(𝑛 − 𝑟)!/((𝑛 − 𝑟 + 1)!) = 1/6 (𝑟 (𝑛 − 𝑟)!)/((𝑛 − 𝑟 + 1) (𝑛 − 𝑟)!) = 1/6 𝑟/(𝑛 + 1 − 𝑟) = 1/6 6r = n + 1 – r n – 7r + 1 = 0 Now we have n – 8r + 9 = 0 …(1) n – 7r + 1 = 0 …(2) From (1) n – 8r + 9 = 0 n = 8r – 9 Putting n = 8r – 9 in (2) (8r – 9) – 7r + 1 = 0 8r – 9 – 7r + 1 = 0 r – 8 = 0 r = 8 Putting value of r in (1) n – 8r + 9 = 0 n – 8(8) + 9 = 0 n – 64 + 9 = 0 n – 55 = 0 n = 55 Hence, n = 55