Ex 8.2,9 - Chapter 8 Class 11 Binomial Theorem (Deleted)
Last updated at Jan. 29, 2020 by
Last updated at Jan. 29, 2020 by
Transcript
Ex 8.2, 9 In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal. We know that General term of expansion (a + b)n is Tr+1 = nCr an–r br For (1 + a)m + n, Putting n = m + n , a = 1, b = a Tr+1 = n + mCr (1)n + m – r (a)r = n + mCr (a)r Finding coefficient of am ar = am r = m Putting r = m in (1) Tm + 1 = n + mCm (a)m = ((𝑛 + 𝑚)!)/𝑚!(𝑛 + 𝑚 − 𝑚 )! (a)m = ((𝑛 + 𝑚)!)/(𝑚! (𝑛)!) (a)m Hence, coefficient of am is ((𝒏 + 𝒎)!)/𝒎!(𝒏)! Finding coefficient of an ar = an r = n Putting r = n in (1) Tn + 1 = n + mCn (a)n = ((𝑛 + 𝑚)!)/𝑛!(𝑛 + 𝑚 −𝑛 )! (a)n = ((𝑛 + 𝑚)!)/𝑛!(𝑚)! (a)n Hence, coefficient of an is ((𝒏 + 𝒎)!)/𝒏!(𝒎)! Hence, Coefficient of am = Coefficient of an Hence proved
Ex 8.2
Ex 8.2, 2 Important Deleted for CBSE Board 2022 Exams
Ex 8.2, 3 Deleted for CBSE Board 2022 Exams
Ex 8.2, 4 Important Deleted for CBSE Board 2022 Exams
Ex 8.2,5 Deleted for CBSE Board 2022 Exams
Ex 8.2 6 Important Deleted for CBSE Board 2022 Exams
Ex 8.2,7 Deleted for CBSE Board 2022 Exams
Ex 8.2,8 Important Deleted for CBSE Board 2022 Exams
Ex 8.2,9 Deleted for CBSE Board 2022 Exams You are here
Ex 8.2,10 Important Deleted for CBSE Board 2022 Exams
Ex 8.2,11 Important Deleted for CBSE Board 2022 Exams
Ex 8.2,12 Deleted for CBSE Board 2022 Exams
Ex 8.2
About the Author