Question 7 - General Term of Binomial Theorem - Chapter 7 Class 11 Binomial Theorem
Last updated at April 8, 2024 by Teachoo
General Term of Binomial Theorem
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Ex 8.2 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams You are here
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
General Term of Binomial Theorem
Last updated at April 8, 2024 by Teachoo
Question 7 Find the middle terms in the expansions of ("3 โ " ๐ฅ3/6)^7 Number of terms = n = 7 Since n is odd there will be two middle termx ((๐ + 1)/2)^๐กโ term & ((๐ + 1)/2+1)^๐กโ term Hence we need to find 4th and 5th term i.e. T4 and T5 We know that general term of (a + b)n is Tr + 1 = nCr an โ r br = ((7 + 1)/2)^๐กโ term = 4th term = ((7 + 1)/2)^๐กโ term = 4th term For ("3 โ " ๐๐/๐)^๐ Putting a = 3 , b = ((โ๐ฅ3)/6) , n = 7 Tr + 1 = 7Cr (3)7 โ r ("โ" ๐ฅ3/6)^๐ Tr + 1 = 7Cr (3)7 โ r (โ1)r (๐ฅ3/6)^๐ Tr + 1 = 7Cr (3)7 โ r (โ1)r (๐ฅ3/6)^๐ Tr + 1 = 7Cr (3)7 โ r (โ1)r (1/6)^๐ ๐ฅ^3๐ Finding 4th term Tr + 1 = 7Cr (3)7 โ r (โ1)r (1/6)^๐ ๐ฅ^3๐ Finding 4th term i.e. T4 = T3 + 1 , Hence r = 3 T3+1 = 7C3 (3)7 โ 3 (โ1)3 (1/6)^3 ๐ฅ^(3(3)) T4 = 7C3 . 34 . (โ1) . 1/63 . (x)9 = โ 7!/3!(7 โ 3)! . 34. 1/((2 ร 3)3) . ๐ฅ9 = โ 7!/(3! 4!) . 34 . 1/(23 . 33) . ๐ฅ9 = โ ((7 ร 6 ร 5 ร 4!)/(3 ร 2 ร 1 ร 4!)) . 34/33 . ๐ฅ9/23 = (โ๐๐๐)/๐ x9 Finding 5th term Tr + 1 = 7Cr (3)7 โ r (โ1)r (1/6)^๐ ๐ฅ^3๐ Finding 5th term i.e. T5 = T4 + 1 , Hence r = 4 T4+1 = 7C4 (3)7 - 4 (โ1)4 (1/6)^4 ๐ฅ^(3(4)) = 7C4 . 33 . 1/64 . (x)12 = 7!/4!(7 โ 4)! . 33 . 1/(2 ร 3)4 . x12 = 7!/(3! 4!) . 33 . 1/(24 . 34) . ๐ฅ12 = ((7 ร 6 ร 5 ร 4!)/(3 ร 2 ร 1 ร 4!)) . 34/34 . ๐ฅ12/24 = ๐๐/๐๐ x12 Hence, the middle terms are (โ๐๐๐)/๐ x9 & ๐๐/๐๐ x12