Ex 8.2 6 - Chapter 7 Class 11 Binomial Theorem
Last updated at April 16, 2024 by Teachoo
General Term of Binomial Theorem
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Ex 8.2 6 Important Deleted for CBSE Board 2025 Exams You are here
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
General Term of Binomial Theorem
Last updated at April 16, 2024 by Teachoo
Question 6 Find the 13th term in the expansion of ("9x – " 1/(3√x))^18 , x ≠ 0. We know that General term of expansion (a + b)n is Tr + 1 = nCr an – r br We need to calculate 13th term (i.e. T13 = T12+1 ) of expansion ("9x – " 1/(3√x))^18 Putting r = 12 , n = 18 , a = 9x & b = 1/(3√x) T12 + 1 = 18C12 (9x)18 – 12 ((−1)/(3√x))^12 = 18!/(12!(18 − 12)) (9x)6 × ((−1)/3)^12 (1/√x)^12 = 18!/(12! × 6!) 96 . x6 . (-1)12 . (1/3) 12 .(1/𝑥)^(1/2 " ×" 12) = (18 × 17 × 16 × 15 × 14 × 13 × 12!)/(12! ×(6 × 5 × 4 × 3 × 2 × 1)) . (32)6 . x6 . 1 . 1/312 . 1/𝑥6 = (18 × 17 × 16 × 15 × 14 × 13 )/((6 × 5 × 4 × 3 × 2 )) . 312 . x6 . 1/312 . 1/𝑥6 = (18 × 17 × 16 × 15 × 14 × 13 )/((6 × 5 × 4 × 3 × 2 )) . 312/312 . 𝑥6/𝑥6 = 18564 × 1 = 18564