Check sibling questions

Example 16 - Convert z = (i - 1)/ cos pi/3 + i sin pi/3 - Polar representation

Example 16 - Chapter 5 Class 11 Complex Numbers - Part 2
Example 16 - Chapter 5 Class 11 Complex Numbers - Part 3 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 4 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 5 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 6 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 7 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 8 Example 16 - Chapter 5 Class 11 Complex Numbers - Part 9

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 8 Convert the complex number z = (𝑖 − 1)/〖cos 〗⁡〖π/3 + 𝑖 sin⁡〖 π/3〗 〗 in the polar form. Let z = (𝑖 − 1)/cos⁡〖 π/3 + 𝑖 sin⁡〖 π/3〗 〗 = (𝑖 − 1)/(cos⁡〖( 180/3 ) + 𝑖 〖sin ( 〗⁡〖180/3〗 〗 ) ) = (𝑖 −1)/(cos⁡〖60° + 𝑖 sin⁡〖60°〗 〗 ) = (𝑖 −1)/(1/2 + √3/2 𝑖) = (𝑖 − 1)/( (1 + √3 𝑖)/2) = (2 ( 𝑖 −1 ))/( 1 + √3 𝑖) Rationalizing = (2 ( 𝑖 −1))/(1+ √3 𝑖) × (1 − √3 𝑖)/(1 − √3 𝑖) = (2 (1 − 𝑖) (1 − √3 𝑖))/((1+ √3 𝑖) (1 − √3 𝑖)) = (2 [𝑖 (1 − √3 𝑖) −1 (1 − √3 𝑖)])/((1+ √3 𝑖) (1 − √3 𝑖)) = (2[𝑖 − √3 𝑖2 − 1 +√3 𝑖])/((1 − √3 𝑖) (1 − √3 𝑖)) Using (a – b) (a + b) = a2 – b2 = (2[ −1 + 𝑖 + √3 𝑖 − √3 𝑖2])/(1^2 −(√3 𝑖)^2 ) = (2 [−1 + 𝑖 + √3 𝑖 − √3 𝑖 (𝑖2)])/(1 − 3𝑖2) Putting 𝑖2 = - 1 = (2 [−1 + 𝑖 + √3 𝑖 − √3 𝑖 (−1 )])/(1 − 3(−1)) = (2 [−1 + 𝑖 + √3 𝑖+ √3])/(1 + 3) = (2 [ ( −1 + √3 ) + ( 𝑖+ √3 𝑖 ) ])/4 = (( −1 + √3 )+𝑖 ( 1+ √3 ) )/2 = (√3 −1)/2 + 𝑖 (√3 + 1)/2 Now z = (√3 −1)/2 + 𝑖 (√3 + 1)/2 Now z = (√3 −1)/2 + 𝑖 (√3 + 1)/2 Let Polar form be z = r ( cos θ + 𝑖 sin θ ) From (1) and (2) (√3 −1)/2 + 𝑖 (√3 + 1)/2 = r ( cos θ + 𝑖 sin θ ) (√3 −1)/2 + 𝑖 (√3 + 1)/2 = r cos θ + 𝑖r sin θ Adding (3) + (4) (4 − 2√3 )/4 + (4 + 2√3 )/4 = r2 cos2 θ + r2 sin2 θ 1/4 ( 4 - 2√3 + 4 + 2√3 ) = r2 ( cos2 θ + sin2 θ ) 1/4 ( 4 + 4 - 2√3 + 2√3 ) = r2 ( cos2 θ + sin2 θ ) 1/4 ( 8 – 0 ) = r2 ( cos2 θ + sin2 θ ) 8/4 = r2 × 1 2 = r2 √2 = r r = √2 Now finding argument (√3 −1)/2 + 𝑖 (√3 + 1)/2 = r cos θ + 𝑖r sin θ Comparing real part (√3 −1)/2 = r cos θ Put r = √2 (√3 −1)/2 = √2 cos θ (√3 −1)/(2√2) = cos θ Hence, cos θ = (√3 −1)/(2√2) & sin θ = (√3 + 1)/(2√2) Hence, cos θ = (√3 −1)/(2√2) & sin θ = (√3 + 1)/(2√2) Since sin θ and cos θ both Positive Hence θ lies in the lst Quadrant Argument (θ ) of z = 75o = 75o × 𝜋/180 = 5𝜋/12 Hence Polar form of z = r ( cos θ + i sin θ ) = √2 ( cos 5𝜋/12 + i sin 5𝜋/12) Hence, Argument = 75° = 75 × 𝜋/180 = 5𝜋/12 Hence , r = √2 , & θ = 5𝜋/12 Thus, Polar form of z = r ( cos θ + i sin θ ) = √2 ( cos 5𝜋/12 + i sin 5𝜋/12)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.